我有一个由装饰器转移变量insurance_mode的问题。我将通过以下装饰器语句来实现:

@execute_complete_reservation(True)
def test_booking_gta_object(self):
    self.test_select_gta_object()

但不幸的是,这种说法并不管用。也许也许有更好的办法来解决这个问题。

def execute_complete_reservation(test_case,insurance_mode):
    def inner_function(self,*args,**kwargs):
        self.test_create_qsf_query()
        test_case(self,*args,**kwargs)
        self.test_select_room_option()
        if insurance_mode:
            self.test_accept_insurance_crosseling()
        else:
            self.test_decline_insurance_crosseling()
        self.test_configure_pax_details()
        self.test_configure_payer_details

    return inner_function

当前回答

带参数的装饰器应该返回一个函数,该函数将接受一个函数,并返回另一个函数

def decorator_factory(argument):
    def decorator(function):
        def wrapper(*args, **kwargs):
            """
                add somhting
            """
            return  function(*args, **kwargs)
        return wrapper
    return decorator

或者你可以使用functools模块的部分

def decorator(function =None,*,argument ):
        if function is None :
            return partial(decorator,argument=argument)
        def wrapper(*args, **kwargs):
            """
                add somhting
            """
            return  function(*args, **kwargs)
        return wrapper

在第二个选项中,确保你像这样传递参数:

@decorator(argument = 'args')
def func():
    pass

其他回答

我认为这里有一个工作的、现实世界的示例,其中包含最通用的用例的使用示例。


下面是函数的装饰器,它在进入和退出函数时输出log。

参数控制是否打印输入输出值,日志级别等。

import logging 
from functools import wraps


def log_in_out(logger=logging.get_logger(), is_print_input=True, is_print_output=True, is_method=True, log_level=logging.DEBUG):
    """
    @param logger-
    @param is_print_input- toggle printing input arguments
    @param is_print_output- toggle printing output values
    @param is_method- True for methods, False for functions. Makes "self" not printed in case of is_print_input==True
    @param log_level-

    @returns- a decorator that logs to logger when entering or exiting the decorated function.
    Don't uglify your code!
    """

    def decor(fn):
        @wraps(fn)
        def wrapper(*args, **kwargs):
            if is_print_input:
                logger.log(
                    msg=f"Entered {fn.__name__} with args={args[1:] if is_method else args}, kwargs={kwargs}",
                    level=log_level
                )
            else:
                logger.log(
                    msg=f"Entered {fn.__name__}",
                    level=log_level
                )

            result = fn(*args, **kwargs)

            if is_print_output and result is not None:
                logger.log(
                    msg=f"Exited {fn.__name__} with result {result}",
                    level=log_level,
                )
            else:
                logger.log(
                    msg=f"Exited {fn.__name__}",
                    level=log_level
                )

            return result

        return wrapper

    return decor

用法:

 @log_in_out(is_method=False, is_print_input=False)
    def foo(a, b=5):
        return 3, a

Foo(2)—>打印

输入foo 输出结果为(3,2)的foo

    class A():
        @log_in_out(is_print_output=False)
        def bar(self, c, m, y):
            return c, 6

a = () A.bar (1,2, y=3)—>打印

输入bar with args=(1, 2), kwargs={y:3} 离开酒吧

编辑:为了深入了解装饰师的心理模型,请看看这个很棒的Pycon Talk。这30分钟很值得。

考虑带参数的装饰器的一种方式是

@decorator
def foo(*args, **kwargs):
    pass

翻译为

foo = decorator(foo)

如果decorator有参数,

@decorator_with_args(arg)
def foo(*args, **kwargs):
    pass

翻译为

foo = decorator_with_args(arg)(foo)

Decorator_with_args是一个函数,它接受自定义参数并返回实际的装饰器(将应用于被装饰的函数)。

我使用了一个简单的技巧与部分,使我的装饰容易

from functools import partial

def _pseudo_decor(fun, argument):
    def ret_fun(*args, **kwargs):
        #do stuff here, for eg.
        print ("decorator arg is %s" % str(argument))
        return fun(*args, **kwargs)
    return ret_fun

real_decorator = partial(_pseudo_decor, argument=arg)

@real_decorator
def foo(*args, **kwargs):
    pass

更新:

上面,foo变成了real_decorator(foo)

修饰函数的一个效果是,foo的名字在修饰器声明中被重写。Foo被real_decorator返回的任何东西“覆盖”。在本例中,是一个新的函数对象。

foo的所有元数据都会被重写,尤其是文档字符串和函数名。

>>> print(foo)
<function _pseudo_decor.<locals>.ret_fun at 0x10666a2f0>

functools。Wraps为我们提供了一个方便的方法,将文档字符串和名称“提升”到返回的函数中。

from functools import partial, wraps

def _pseudo_decor(fun, argument):
    # magic sauce to lift the name and doc of the function
    @wraps(fun)
    def ret_fun(*args, **kwargs):
        # pre function execution stuff here, for eg.
        print("decorator argument is %s" % str(argument))
        returned_value =  fun(*args, **kwargs)
        # post execution stuff here, for eg.
        print("returned value is %s" % returned_value)
        return returned_value

    return ret_fun

real_decorator1 = partial(_pseudo_decor, argument="some_arg")
real_decorator2 = partial(_pseudo_decor, argument="some_other_arg")

@real_decorator1
def bar(*args, **kwargs):
    pass

>>> print(bar)
<function __main__.bar(*args, **kwargs)>

>>> bar(1,2,3, k="v", x="z")
decorator argument is some_arg
returned value is None

它是一个可以以多种方式调用的装饰器(在python3.7中测试):

import functools


def my_decorator(*args_or_func, **decorator_kwargs):

    def _decorator(func):

        @functools.wraps(func)
        def wrapper(*args, **kwargs):

            if not args_or_func or callable(args_or_func[0]):
                # Here you can set default values for positional arguments
                decorator_args = ()
            else:
                decorator_args = args_or_func

            print(
                "Available inside the wrapper:",
                decorator_args, decorator_kwargs
            )

            # ...
            result = func(*args, **kwargs)
            # ...

            return result

        return wrapper

    return _decorator(args_or_func[0]) \
        if args_or_func and callable(args_or_func[0]) else _decorator


@my_decorator
def func_1(arg): print(arg)

func_1("test")
# Available inside the wrapper: () {}
# test


@my_decorator()
def func_2(arg): print(arg)

func_2("test")
# Available inside the wrapper: () {}
# test


@my_decorator("any arg")
def func_3(arg): print(arg)

func_3("test")
# Available inside the wrapper: ('any arg',) {}
# test


@my_decorator("arg_1", 2, [3, 4, 5], kwarg_1=1, kwarg_2="2")
def func_4(arg): print(arg)

func_4("test")
# Available inside the wrapper: ('arg_1', 2, [3, 4, 5]) {'kwarg_1': 1, 'kwarg_2': '2'}
# test

PS感谢用户@norok2 - https://stackoverflow.com/a/57268935/5353484

UPD装饰器,用于根据注释验证类的函数和方法的参数和/或结果。可用于同步或异步版本:https://github.com/EvgeniyBurdin/valdec

我猜你的问题是把参数传递给你的装饰师。这有点棘手,不简单。

下面是一个如何做到这一点的例子:

class MyDec(object):
    def __init__(self,flag):
        self.flag = flag
    def __call__(self, original_func):
        decorator_self = self
        def wrappee( *args, **kwargs):
            print 'in decorator before wrapee with flag ',decorator_self.flag
            original_func(*args,**kwargs)
            print 'in decorator after wrapee with flag ',decorator_self.flag
        return wrappee

@MyDec('foo de fa fa')
def bar(a,b,c):
    print 'in bar',a,b,c

bar('x','y','z')

打印:

in decorator before wrapee with flag  foo de fa fa
in bar x y z
in decorator after wrapee with flag  foo de fa fa

详见Bruce Eckel的文章。

我想展示一个想法,在我看来很优雅。t.dubrownik提出的解决方案显示了一个始终相同的模式:无论装饰器做什么,您都需要三层包装器。

所以我认为这是一个元装饰师的工作,也就是说,装饰师的装饰师。由于decorator是一个函数,它实际上是一个带有参数的常规decorator:

def parametrized(dec):
    def layer(*args, **kwargs):
        def repl(f):
            return dec(f, *args, **kwargs)
        return repl
    return layer

这可以应用于常规的装饰器,以便添加参数。例如,我们有一个decorator,它将一个函数的结果加倍:

def double(f):
    def aux(*xs, **kws):
        return 2 * f(*xs, **kws)
    return aux

@double
def function(a):
    return 10 + a

print function(3)    # Prints 26, namely 2 * (10 + 3)

使用@ parameterized,我们可以构建一个带参数的通用@multiply装饰器

@parametrized
def multiply(f, n):
    def aux(*xs, **kws):
        return n * f(*xs, **kws)
    return aux

@multiply(2)
def function(a):
    return 10 + a

print function(3)    # Prints 26

@multiply(3)
def function_again(a):
    return 10 + a

print function(3)          # Keeps printing 26
print function_again(3)    # Prints 39, namely 3 * (10 + 3)

通常,参数化装饰器的第一个参数是函数,而其余参数将对应于参数化装饰器的参数。

一个有趣的用法示例可以是类型安全的断言装饰器:

import itertools as it

@parametrized
def types(f, *types):
    def rep(*args):
        for a, t, n in zip(args, types, it.count()):
            if type(a) is not t:
                raise TypeError('Value %d has not type %s. %s instead' %
                    (n, t, type(a))
                )
        return f(*args)
    return rep

@types(str, int)  # arg1 is str, arg2 is int
def string_multiply(text, times):
    return text * times

print(string_multiply('hello', 3))    # Prints hellohellohello
print(string_multiply(3, 3))          # Fails miserably with TypeError

最后注意:这里我没有使用functools。包装器函数,但我建议始终使用它。