我有一个由装饰器转移变量insurance_mode的问题。我将通过以下装饰器语句来实现:

@execute_complete_reservation(True)
def test_booking_gta_object(self):
    self.test_select_gta_object()

但不幸的是,这种说法并不管用。也许也许有更好的办法来解决这个问题。

def execute_complete_reservation(test_case,insurance_mode):
    def inner_function(self,*args,**kwargs):
        self.test_create_qsf_query()
        test_case(self,*args,**kwargs)
        self.test_select_room_option()
        if insurance_mode:
            self.test_accept_insurance_crosseling()
        else:
            self.test_decline_insurance_crosseling()
        self.test_configure_pax_details()
        self.test_configure_payer_details

    return inner_function

当前回答

编辑:为了深入了解装饰师的心理模型,请看看这个很棒的Pycon Talk。这30分钟很值得。

考虑带参数的装饰器的一种方式是

@decorator
def foo(*args, **kwargs):
    pass

翻译为

foo = decorator(foo)

如果decorator有参数,

@decorator_with_args(arg)
def foo(*args, **kwargs):
    pass

翻译为

foo = decorator_with_args(arg)(foo)

Decorator_with_args是一个函数,它接受自定义参数并返回实际的装饰器(将应用于被装饰的函数)。

我使用了一个简单的技巧与部分,使我的装饰容易

from functools import partial

def _pseudo_decor(fun, argument):
    def ret_fun(*args, **kwargs):
        #do stuff here, for eg.
        print ("decorator arg is %s" % str(argument))
        return fun(*args, **kwargs)
    return ret_fun

real_decorator = partial(_pseudo_decor, argument=arg)

@real_decorator
def foo(*args, **kwargs):
    pass

更新:

上面,foo变成了real_decorator(foo)

修饰函数的一个效果是,foo的名字在修饰器声明中被重写。Foo被real_decorator返回的任何东西“覆盖”。在本例中,是一个新的函数对象。

foo的所有元数据都会被重写,尤其是文档字符串和函数名。

>>> print(foo)
<function _pseudo_decor.<locals>.ret_fun at 0x10666a2f0>

functools。Wraps为我们提供了一个方便的方法,将文档字符串和名称“提升”到返回的函数中。

from functools import partial, wraps

def _pseudo_decor(fun, argument):
    # magic sauce to lift the name and doc of the function
    @wraps(fun)
    def ret_fun(*args, **kwargs):
        # pre function execution stuff here, for eg.
        print("decorator argument is %s" % str(argument))
        returned_value =  fun(*args, **kwargs)
        # post execution stuff here, for eg.
        print("returned value is %s" % returned_value)
        return returned_value

    return ret_fun

real_decorator1 = partial(_pseudo_decor, argument="some_arg")
real_decorator2 = partial(_pseudo_decor, argument="some_other_arg")

@real_decorator1
def bar(*args, **kwargs):
    pass

>>> print(bar)
<function __main__.bar(*args, **kwargs)>

>>> bar(1,2,3, k="v", x="z")
decorator argument is some_arg
returned value is None

其他回答

这是一个函数装饰器模板,如果没有参数,则不需要(),并且支持位置参数和关键字参数(但需要检查locals(),以确定第一个参数是否是要装饰的函数):

import functools


def decorator(x_or_func=None, *decorator_args, **decorator_kws):
    def _decorator(func):
        @functools.wraps(func)
        def wrapper(*args, **kws):
            if 'x_or_func' not in locals() \
                    or callable(x_or_func) \
                    or x_or_func is None:
                x = ...  # <-- default `x` value
            else:
                x = x_or_func
            return func(*args, **kws)

        return wrapper

    return _decorator(x_or_func) if callable(x_or_func) else _decorator

下面是一个例子:

def multiplying(factor_or_func=None):
    def _decorator(func):
        @functools.wraps(func)
        def wrapper(*args, **kwargs):
            if 'factor_or_func' not in locals() \
                    or callable(factor_or_func) \
                    or factor_or_func is None:
                factor = 1
            else:
                factor = factor_or_func
            return factor * func(*args, **kwargs)
        return wrapper
    return _decorator(factor_or_func) if callable(factor_or_func) else _decorator


@multiplying
def summing(x): return sum(x)

print(summing(range(10)))
# 45


@multiplying()
def summing(x): return sum(x)

print(summing(range(10)))
# 45


@multiplying(10)
def summing(x): return sum(x)

print(summing(range(10)))
# 450

或者,如果不需要位置参数,可以不检查wrapper()中的第一个参数(从而不需要使用locals()):

import functools


def decorator(func_=None, **decorator_kws):
    def _decorator(func):
        @functools.wraps(func)
        def wrapper(*args, **kws):
            return func(*args, **kws)
        return wrapper

    if callable(func_):
        return _decorator(func_)
    elif func_ is None:
        return _decorator
    else:
        raise RuntimeWarning("Positional arguments are not supported.")

下面是一个例子:

import functools


def multiplying(func_=None, factor=1):
    def _decorator(func):
        @functools.wraps(func)
        def wrapper(*args, **kwargs):
            return factor * func(*args, **kwargs)
        return wrapper

    if callable(func_):
        return _decorator(func_)
    elif func_ is None:
        return _decorator
    else:
        raise RuntimeWarning("Positional arguments are not supported.")


@multiplying
def summing(x): return sum(x)

print(summing(range(10)))
# 45


@multiplying()
def summing(x): return sum(x)

print(summing(range(10)))
# 45


@multiplying(factor=10)
def summing(x): return sum(x)

print(summing(range(10)))
# 450


@multiplying(10)
def summing(x): return sum(x)
print(summing(range(10)))
# RuntimeWarning Traceback (most recent call last)
#    ....
# RuntimeWarning: Positional arguments are not supported.

(部分改编自@ShitalShah的回答)

带参数的装饰器的语法有点不同——带参数的装饰器应该返回一个函数,该函数将接受一个函数并返回另一个函数。它应该返回一个普通的装饰器。有点困惑,对吧?我的意思是:

def decorator_factory(argument):
    def decorator(function):
        def wrapper(*args, **kwargs):
            funny_stuff()
            something_with_argument(argument)
            result = function(*args, **kwargs)
            more_funny_stuff()
            return result
        return wrapper
    return decorator

在这里你可以读到更多关于这个主题的内容——也可以使用可调用对象来实现这个功能,这里也有解释。

def decorator(argument):
    def real_decorator(function):
        def wrapper(*args):
            for arg in args:
                assert type(arg)==int,f'{arg} is not an interger'
            result = function(*args)
            result = result*argument
            return result
        return wrapper
    return real_decorator

装饰器的使用

@decorator(2)
def adder(*args):
    sum=0
    for i in args:
        sum+=i
    return sum

然后

adder(2,3)

生产

10

but

adder('hi',3)

生产

---------------------------------------------------------------------------
AssertionError                            Traceback (most recent call last)
<ipython-input-143-242a8feb1cc4> in <module>
----> 1 adder('hi',3)

<ipython-input-140-d3420c248ebd> in wrapper(*args)
      3         def wrapper(*args):
      4             for arg in args:
----> 5                 assert type(arg)==int,f'{arg} is not an interger'
      6             result = function(*args)
      7             result = result*argument

AssertionError: hi is not an interger

我猜你的问题是把参数传递给你的装饰师。这有点棘手,不简单。

下面是一个如何做到这一点的例子:

class MyDec(object):
    def __init__(self,flag):
        self.flag = flag
    def __call__(self, original_func):
        decorator_self = self
        def wrappee( *args, **kwargs):
            print 'in decorator before wrapee with flag ',decorator_self.flag
            original_func(*args,**kwargs)
            print 'in decorator after wrapee with flag ',decorator_self.flag
        return wrappee

@MyDec('foo de fa fa')
def bar(a,b,c):
    print 'in bar',a,b,c

bar('x','y','z')

打印:

in decorator before wrapee with flag  foo de fa fa
in bar x y z
in decorator after wrapee with flag  foo de fa fa

详见Bruce Eckel的文章。

这是curry函数的一个很好的用例。

curry函数本质上是延迟函数的调用,直到提供了所有输入。

这可以用于各种事情,如包装器或函数式编程。在本例中,让我们创建一个接受输入的包装器。

我将使用一个简单的包pamda,其中包含一个用于python的curry函数。这可以用作其他函数的包装器。

安装 Pamda:

pip install pamda

创建一个简单的带有两个输入的装饰函数:

@pamda.curry()
def my_decorator(input, func):
    print ("Executing Decorator")
    print(f"input:{input}")
    return func

使用提供给目标函数的第一个输入应用你的装饰器:

@my_decorator('Hi!')
def foo(input):
    print('Executing Foo!')
    print(f"input:{input}")

执行你的包装函数:

x=foo('Bye!')

把所有东西放在一起:

from pamda import pamda

@pamda.curry()
def my_decorator(input, func):
    print ("Executing Decorator")
    print(f"input:{input}")
    return func

@my_decorator('Hi!')
def foo(input):
    print('Executing Foo!')
    print(f"input:{input}")

x=foo('Bye!')

将:

Executing Decorator
input:Hi!
Executing Foo!
input:Bye!