我有一个由装饰器转移变量insurance_mode的问题。我将通过以下装饰器语句来实现:

@execute_complete_reservation(True)
def test_booking_gta_object(self):
    self.test_select_gta_object()

但不幸的是,这种说法并不管用。也许也许有更好的办法来解决这个问题。

def execute_complete_reservation(test_case,insurance_mode):
    def inner_function(self,*args,**kwargs):
        self.test_create_qsf_query()
        test_case(self,*args,**kwargs)
        self.test_select_room_option()
        if insurance_mode:
            self.test_accept_insurance_crosseling()
        else:
            self.test_decline_insurance_crosseling()
        self.test_configure_pax_details()
        self.test_configure_payer_details

    return inner_function

当前回答

在我的实例中,我决定通过一行lambda来解决这个问题,以创建一个新的decorator函数:

def finished_message(function, message="Finished!"):

    def wrapper(*args, **kwargs):
        output = function(*args,**kwargs)
        print(message)
        return output

    return wrapper

@finished_message
def func():
    pass

my_finished_message = lambda f: finished_message(f, "All Done!")

@my_finished_message
def my_func():
    pass

if __name__ == '__main__':
    func()
    my_func()

执行时,输出:

Finished!
All Done!

也许不像其他解决方案那样可扩展,但对我来说是可行的。

其他回答

这是curry函数的一个很好的用例。

curry函数本质上是延迟函数的调用,直到提供了所有输入。

这可以用于各种事情,如包装器或函数式编程。在本例中,让我们创建一个接受输入的包装器。

我将使用一个简单的包pamda,其中包含一个用于python的curry函数。这可以用作其他函数的包装器。

安装 Pamda:

pip install pamda

创建一个简单的带有两个输入的装饰函数:

@pamda.curry()
def my_decorator(input, func):
    print ("Executing Decorator")
    print(f"input:{input}")
    return func

使用提供给目标函数的第一个输入应用你的装饰器:

@my_decorator('Hi!')
def foo(input):
    print('Executing Foo!')
    print(f"input:{input}")

执行你的包装函数:

x=foo('Bye!')

把所有东西放在一起:

from pamda import pamda

@pamda.curry()
def my_decorator(input, func):
    print ("Executing Decorator")
    print(f"input:{input}")
    return func

@my_decorator('Hi!')
def foo(input):
    print('Executing Foo!')
    print(f"input:{input}")

x=foo('Bye!')

将:

Executing Decorator
input:Hi!
Executing Foo!
input:Bye!

它是一个可以以多种方式调用的装饰器(在python3.7中测试):

import functools


def my_decorator(*args_or_func, **decorator_kwargs):

    def _decorator(func):

        @functools.wraps(func)
        def wrapper(*args, **kwargs):

            if not args_or_func or callable(args_or_func[0]):
                # Here you can set default values for positional arguments
                decorator_args = ()
            else:
                decorator_args = args_or_func

            print(
                "Available inside the wrapper:",
                decorator_args, decorator_kwargs
            )

            # ...
            result = func(*args, **kwargs)
            # ...

            return result

        return wrapper

    return _decorator(args_or_func[0]) \
        if args_or_func and callable(args_or_func[0]) else _decorator


@my_decorator
def func_1(arg): print(arg)

func_1("test")
# Available inside the wrapper: () {}
# test


@my_decorator()
def func_2(arg): print(arg)

func_2("test")
# Available inside the wrapper: () {}
# test


@my_decorator("any arg")
def func_3(arg): print(arg)

func_3("test")
# Available inside the wrapper: ('any arg',) {}
# test


@my_decorator("arg_1", 2, [3, 4, 5], kwarg_1=1, kwarg_2="2")
def func_4(arg): print(arg)

func_4("test")
# Available inside the wrapper: ('arg_1', 2, [3, 4, 5]) {'kwarg_1': 1, 'kwarg_2': '2'}
# test

PS感谢用户@norok2 - https://stackoverflow.com/a/57268935/5353484

UPD装饰器,用于根据注释验证类的函数和方法的参数和/或结果。可用于同步或异步版本:https://github.com/EvgeniyBurdin/valdec

编写一个带参数和不带参数的装饰器是一个挑战,因为Python在这两种情况下期望完全不同的行为!许多答案都试图解决这个问题,下面是@norok2对答案的改进。具体来说,这种变化消除了locals()的使用。

下面是@norok2给出的相同示例:

import functools

def multiplying(f_py=None, factor=1):
    assert callable(f_py) or f_py is None
    def _decorator(func):
        @functools.wraps(func)
        def wrapper(*args, **kwargs):
            return factor * func(*args, **kwargs)
        return wrapper
    return _decorator(f_py) if callable(f_py) else _decorator


@multiplying
def summing(x): return sum(x)

print(summing(range(10)))
# 45


@multiplying()
def summing(x): return sum(x)

print(summing(range(10)))
# 45


@multiplying(factor=10)
def summing(x): return sum(x)

print(summing(range(10)))
# 450

玩一下这段代码。

问题是用户必须提供键、值对的参数,而不是位置参数,并且第一个参数是保留的。

下面是一个使用带有参数的装饰器的Flask示例。假设我们有一个路由'/user/name',我们想要映射到他的主页。

def matchR(dirPath):
    def decorator(func):
        def wrapper(msg):
            if dirPath[0:6] == '/user/':
                print(f"User route '{dirPath}' match, calling func {func}")
                name = dirPath[6:]
                return func(msg2=name, msg3=msg)
            else:
                print(f"Input dirPath '{dirPath}' does not match route '/user/'")
                return
        return  wrapper
    return decorator

#@matchR('/Morgan_Hills')
@matchR('/user/Morgan_Hills')
def home(**kwMsgs):
    for arg in kwMsgs:
        if arg == 'msg2':
            print(f"In home({arg}): Hello {kwMsgs[arg]}, welcome home!")
        if arg == 'msg3':
            print(f"In home({arg}): {kwMsgs[arg]}")

home('This is your profile rendered as in index.html.')

输出:

User route '/user/Morgan_Hills' match, calling func <function home at 0x000001DD5FDCD310>
In home(msg2): Hello Morgan_Hills, welcome home!
In home(msg3): This is your profile rendered as in index.html.

我认为这里有一个工作的、现实世界的示例,其中包含最通用的用例的使用示例。


下面是函数的装饰器,它在进入和退出函数时输出log。

参数控制是否打印输入输出值,日志级别等。

import logging 
from functools import wraps


def log_in_out(logger=logging.get_logger(), is_print_input=True, is_print_output=True, is_method=True, log_level=logging.DEBUG):
    """
    @param logger-
    @param is_print_input- toggle printing input arguments
    @param is_print_output- toggle printing output values
    @param is_method- True for methods, False for functions. Makes "self" not printed in case of is_print_input==True
    @param log_level-

    @returns- a decorator that logs to logger when entering or exiting the decorated function.
    Don't uglify your code!
    """

    def decor(fn):
        @wraps(fn)
        def wrapper(*args, **kwargs):
            if is_print_input:
                logger.log(
                    msg=f"Entered {fn.__name__} with args={args[1:] if is_method else args}, kwargs={kwargs}",
                    level=log_level
                )
            else:
                logger.log(
                    msg=f"Entered {fn.__name__}",
                    level=log_level
                )

            result = fn(*args, **kwargs)

            if is_print_output and result is not None:
                logger.log(
                    msg=f"Exited {fn.__name__} with result {result}",
                    level=log_level,
                )
            else:
                logger.log(
                    msg=f"Exited {fn.__name__}",
                    level=log_level
                )

            return result

        return wrapper

    return decor

用法:

 @log_in_out(is_method=False, is_print_input=False)
    def foo(a, b=5):
        return 3, a

Foo(2)—>打印

输入foo 输出结果为(3,2)的foo

    class A():
        @log_in_out(is_print_output=False)
        def bar(self, c, m, y):
            return c, 6

a = () A.bar (1,2, y=3)—>打印

输入bar with args=(1, 2), kwargs={y:3} 离开酒吧