我试图在Bash脚本中划分两个图像宽度,但Bash给我0作为结果:
RESULT=$(($IMG_WIDTH/$IMG2_WIDTH))
我确实研究了Bash指南,我知道我应该使用bc,在互联网上的所有例子中,他们都使用bc。在echo中,我试图把同样的东西放在我的SCALE中,但它不起作用。
以下是我在教程中找到的例子:
echo "scale=2; ${userinput}" | bc
我怎么能让巴斯给我0.5这样的浮点数呢?
我试图在Bash脚本中划分两个图像宽度,但Bash给我0作为结果:
RESULT=$(($IMG_WIDTH/$IMG2_WIDTH))
我确实研究了Bash指南,我知道我应该使用bc,在互联网上的所有例子中,他们都使用bc。在echo中,我试图把同样的东西放在我的SCALE中,但它不起作用。
以下是我在教程中找到的例子:
echo "scale=2; ${userinput}" | bc
我怎么能让巴斯给我0.5这样的浮点数呢?
当前回答
作为bc的替代方案,您可以在脚本中使用awk。
例如:
echo "$IMG_WIDTH $IMG2_WIDTH" | awk '{printf "%.2f \n", $1/$2}'
在上面,“%.”2f”告诉printf函数返回一个小数点后两位的浮点数。我使用echo将变量管道作为字段,因为awk对它们正常操作。“$1”和“$2”表示输入awk的第一个和第二个字段。
你可以将结果存储为其他变量,使用:
RESULT = `echo ...`
其他回答
它不是真正的浮点数,但如果你想在一次调用bc时设置多个结果…
source /dev/stdin <<<$(bc <<< '
d='$1'*3.1415926535897932384626433832795*2
print "d=",d,"\n"
a='$1'*'$1'*3.1415926535897932384626433832795
print "a=",a,"\n"
')
echo bc radius:$1 area:$a diameter:$d
计算半径为$1的圆的面积和直径
对于那些试图用公认的答案计算百分比,但失去精度的人:
如果你运行这个:
echo "scale=2; (100/180) * 180" | bc
你只能得到99.00,这就失去了精确度。
如果你这样运行:
echo "result = (100/180) * 180; scale=2; result / 1" | bc -l
现在你得到99.99。
因为你只在打印的时候缩放。
参考此处
如果你找到了你喜欢的变体,你也可以把它包装到一个函数中。
这里我将一些bashism包装到div函数中:
一个衬套:
function div { local _d=${3:-2}; local _n=0000000000; _n=${_n:0:$_d}; local _r=$(($1$_n/$2)); _r=${_r:0:-$_d}.${_r: -$_d}; echo $_r;}
或多行:
function div {
local _d=${3:-2}
local _n=0000000000
_n=${_n:0:$_d}
local _r=$(($1$_n/$2))
_r=${_r:0:-$_d}.${_r: -$_d}
echo $_r
}
现在你得到了这个函数
div <dividend> <divisor> [<precision=2>]
然后像这样使用它
> div 1 2
.50
> div 273 123 5
2.21951
> x=$(div 22 7)
> echo $x
3.14
更新 我添加了一个小脚本,为您提供了bash的基本浮点数操作:
用法:
> add 1.2 3.45
4.65
> sub 1000 .007
999.993
> mul 1.1 7.07
7.7770
> div 10 3
3.
> div 10 3.000
3.333
这里是脚本:
#!/bin/bash
__op() {
local z=00000000000000000000000000000000
local a1=${1%.*}
local x1=${1//./}
local n1=$((${#x1}-${#a1}))
local a2=${2%.*}
local x2=${2//./}
local n2=$((${#x2}-${#a2}))
local n=$n1
if (($n1 < $n2)); then
local n=$n2
x1=$x1${z:0:$(($n2-$n1))}
fi
if (($n1 > $n2)); then
x2=$x2${z:0:$(($n1-$n2))}
fi
if [ "$3" == "/" ]; then
x1=$x1${z:0:$n}
fi
local r=$(($x1"$3"$x2))
local l=$((${#r}-$n))
if [ "$3" == "*" ]; then
l=$(($l-$n))
fi
echo ${r:0:$l}.${r:$l}
}
add() { __op $1 $2 + ;}
sub() { __op $1 $2 - ;}
mul() { __op $1 $2 "*" ;}
div() { __op $1 $2 / ;}
如何在bash中进行浮点计算:
不同于在bc命令中使用"here strings"(<<<),这是我最喜欢的bc浮点示例,来自bc手册页的示例部分(参见man bc手册页)。
在我们开始之前,知道pi的方程是:pi = 4*atan(1)。下面的A()是atan()的BC数学函数。
This is how to store the result of a floating point calculation into a bash variable--in this case into a variable called pi. Note that scale=10 sets the number of decimal digits of precision to 10 in this case. Any decimal digits after this place are truncated. pi=$(echo "scale=10; 4*a(1)" | bc -l) Now, to have a single line of code that also prints out the value of this variable, simply add the echo command to the end as a follow-up command, as follows. Note the truncation at 10 decimal places, as commanded: pi=$(echo "scale=10; 4*a(1)" | bc -l); echo $pi 3.1415926532 Finally, let's throw in some rounding. Here we will use the printf function to round to 4 decimal places. Note that the 3.14159... rounds now to 3.1416. Since we are rounding, we no longer need to use scale=10 to truncate to 10 decimal places, so we'll just remove that part. Here's the end solution: pi=$(printf %.4f $(echo "4*a(1)" | bc -l)); echo $pi 3.1416
下面是上述技术的另一个非常棒的应用程序和演示:测量和打印运行时。
(参见我的另一个答案)。
注意,dt_min从0.01666666666…0.017:
start=$SECONDS; sleep 1; end=$SECONDS; dt_sec=$(( end - start )); dt_min=$(printf %.3f $(echo "$dt_sec/60" | bc -l)); echo "dt_sec = $dt_sec; dt_min = $dt_min"
dt_sec = 1; dt_min = 0.017
相关:
(我的回答)https://unix.stackexchange.com/questions/52313/how-to-get-execution-time-of-a-script-effectively/547849#547849 [我的问题]三个左尖括号(' <<< ')在bash中是什么意思? https://unix.stackexchange.com/questions/80362/what-does-mean/80368#80368 https://askubuntu.com/questions/179898/how-to-round-decimals-using-bc-in-bash/574474#574474
There are scenarios in wich you cannot use bc becouse it might simply not be present, like in some cut down versions of busybox or embedded systems. In any case limiting outer dependencies is always a good thing to do so you can always add zeroes to the number being divided by (numerator), that is the same as multiplying by a power of 10 (you should choose a power of 10 according to the precision you need), that will make the division output an integer number. Once you have that integer treat it as a string and position the decimal point (moving it from right to left) a number of times equal to the power of ten you multiplied the numerator by. This is a simple way of obtaining float results by using only integer numbers.