代表数字7的8位像这样:

00000111

设置了三个比特。

确定32位整数中设置位数的算法是什么?


当前回答

c++ 20 std:: popcount

以下建议已合并http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0553r4.html,并应将其添加到<bit>头。

我希望用法是这样的:

#include <bit>
#include <iostream>

int main() {
    std::cout << std::popcount(0x55) << std::endl;
}

当支持GCC时,我会尝试一下,GCC 9.1.0带有g++-9 -std=c++2a仍然不支持它。

提案说:

标题:< > 命名空间STD { // 25.5.6,计数 模板类T > < conexpr int popcount(T x) noexcept;

and:

模板类T > < conexpr int popcount(T x) noexcept; 约束:T是无符号整数类型(3.9.1 [basic.fundamental])。 返回:x值中的1位数。

std::rotl和std::rotr也被添加来执行循环位旋转:c++中循环移位(旋转)操作的最佳实践

其他回答

public class BinaryCounter {

private int N;

public BinaryCounter(int N) {
    this.N = N;
}

public static void main(String[] args) {

    BinaryCounter counter=new BinaryCounter(7);     
    System.out.println("Number of ones is "+ counter.count());

}

public int count(){
    if(N<=0) return 0;
    int counter=0;
    int K = 0;
    do{
        K = biggestPowerOfTwoSmallerThan(N);
        N = N-K;
        counter++;
    }while (N != 0);
    return counter;

}

private int biggestPowerOfTwoSmallerThan(int N) {
    if(N==1) return 1;
    for(int i=0;i<N;i++){
        if(Math.pow(2, i) > N){
            int power = i-1;
            return (int) Math.pow(2, power);
        }
    }
    return 0;
}
}

当你写出比特模式时,“黑客的喜悦”比特旋转变得更加清晰。

unsigned int bitCount(unsigned int x)
{
  x = ((x >> 1) & 0b01010101010101010101010101010101)
     + (x       & 0b01010101010101010101010101010101);
  x = ((x >> 2) & 0b00110011001100110011001100110011)
     + (x       & 0b00110011001100110011001100110011); 
  x = ((x >> 4) & 0b00001111000011110000111100001111)
     + (x       & 0b00001111000011110000111100001111); 
  x = ((x >> 8) & 0b00000000111111110000000011111111)
     + (x       & 0b00000000111111110000000011111111); 
  x = ((x >> 16)& 0b00000000000000001111111111111111)
     + (x       & 0b00000000000000001111111111111111); 
  return x;
}

第一步将偶数位加到奇数位上,产生每两个位的和。其他步骤将高阶数据块添加到低阶数据块,将数据块的大小一直增加一倍,直到最终计数占用整个int。

天真的解决方案

时间复杂度为O(no。n的比特数)

int countSet(unsigned int n)
{
    int res=0;
    while(n!=0){
      res += (n&1);
      n >>= 1;      // logical right shift, like C unsigned or Java >>>
    }
   return res;
}

Brian Kerningam的算法

时间复杂度为O(n中设置位的个数)

int countSet(unsigned int n)
{
  int res=0;
  while(n != 0)
  {
    n = (n & (n-1));
    res++;
  }
  return res;
} 

32位数字的查找表方法-在这种方法中,我们将32位数字分解为4个8位数字的块

时间复杂度为O(1)

static unsigned char table[256]; /* the table size is 256,
                        the number of values i&0xFF (8 bits) can have */

void initialize() //holds the number of set bits from 0 to 255
{
  table[0]=0;
  for(unsigned int i=1;i<256;i++)
     table[i]=(i&1)+table[i>>1];
}

int countSet(unsigned int n)
{
  // 0xff is hexadecimal representation of 8 set bits.
  int res=table[n & 0xff];
  n=n>>8;
  res=res+ table[n & 0xff];
  n=n>>8;
  res=res+ table[n & 0xff];
  n=n>>8;
  res=res+ table[n & 0xff];
  return res;
}

这也可以正常工作:

int ans = 0;
while(num) {
  ans += (num & 1);
  num = num >> 1;
}    
return ans;
private int get_bits_set(int v)
{
    int c; // 'c' accumulates the total bits set in 'v'
    for (c = 0; v>0; c++)
    {
        v &= v - 1; // Clear the least significant bit set
    }
    return c;
}