在我多年的编程生涯中,我经常使用递归来解决简单的问题,但我完全意识到,有时由于内存/速度问题,您需要迭代。

所以,在很久以前的某个时候,我去尝试寻找是否存在任何“模式”或教科书上的方法来将常见的递归方法转换为迭代,但一无所获。至少我想不起有什么帮助。

有一般的规则吗? 有“模式”吗?


当前回答

这个链接提供了一些解释,并提出了保持“位置”的想法,以便能够在几个递归调用之间到达确切的位置:

但是,所有这些示例都描述了递归调用进行固定次数的场景。当你遇到以下情况时,事情就变得棘手了:

function rec(...) {
  for/while loop {
    var x = rec(...)
    // make a side effect involving return value x
  }
}

其他回答

实际上,最常见的方法是保留自己的堆栈。下面是一个C语言的递归快速排序函数:

void quicksort(int* array, int left, int right)
{
    if(left >= right)
        return;

    int index = partition(array, left, right);
    quicksort(array, left, index - 1);
    quicksort(array, index + 1, right);
}

以下是我们如何通过保持自己的堆栈来实现迭代:

void quicksort(int *array, int left, int right)
{
    int stack[1024];
    int i=0;

    stack[i++] = left;
    stack[i++] = right;

    while (i > 0)
    {
        right = stack[--i];
        left = stack[--i];

        if (left >= right)
             continue;

        int index = partition(array, left, right);
        stack[i++] = left;
        stack[i++] = index - 1;
        stack[i++] = index + 1;
        stack[i++] = right;
    }
}

显然,这个例子没有检查堆栈边界……实际上,你可以根据最坏的情况来确定堆栈的大小。但你懂的。

要寻找的一种模式是函数末尾的递归调用(所谓的尾部递归)。这很容易用一段时间来代替。例如,函数foo:

void foo(Node* node)
{
    if(node == NULL)
       return;
    // Do something with node...
    foo(node->left);
    foo(node->right);
}

以调用foo结束。这可以替换为:

void foo(Node* node)
{
    while(node != NULL)
    {
        // Do something with node...
        foo(node->left);
        node = node->right;
     }
}

这消除了第二次递归调用。

通常,通过将通常传递给递归函数的参数推入堆栈,我将递归算法替换为迭代算法。事实上,您正在用自己的程序堆栈替换程序堆栈。

var stack = [];
stack.push(firstObject);

// while not empty
while (stack.length) {

    // Pop off end of stack.
    obj = stack.pop();

    // Do stuff.
    // Push other objects on the stack as needed.
    ...

}

注意:如果你在里面有多个递归调用,并且你想要保留调用的顺序,你必须以相反的顺序将它们添加到堆栈:

foo(first);
foo(second);

必须由

stack.push(second);
stack.push(first);

编辑:文章堆栈和递归消除(或文章备份链接)详细介绍了这个主题。

我的例子是用Clojure编写的,但是应该很容易翻译成任何语言。

给定这个函数,当n值较大时StackOverflows:

(defn factorial [n]
  (if (< n 2)
    1
    (*' n (factorial (dec n)))))

我们可以用以下方式定义一个使用自己堆栈的版本:

(defn factorial [n]
  (loop [n n
         stack []]
    (if (< n 2)
      (return 1 stack)
      ;; else loop with new values
      (recur (dec n)
             ;; push function onto stack
             (cons (fn [n-1!]
                     (*' n n-1!))
                   stack)))))

其中return定义为:

(defn return
  [v stack]
  (reduce (fn [acc f]
            (f acc))
          v
          stack))

这也适用于更复杂的函数,例如阿克曼函数:

(defn ackermann [m n]
  (cond
    (zero? m)
    (inc n)

    (zero? n)
    (recur (dec m) 1)

    :else
    (recur (dec m)
           (ackermann m (dec n)))))

可以转化为:

(defn ackermann [m n]
  (loop [m m
         n n
         stack []]
    (cond
      (zero? m)
      (return (inc n) stack)

      (zero? n)
      (recur (dec m) 1 stack)

      :else
      (recur m
             (dec n)
             (cons #(ackermann (dec m) %)
                   stack)))))

似乎没有人指出递归函数在主体中调用自己超过一次的位置,并处理返回递归中的特定点(即不是原始递归)。据说每一个递归都可以转化为迭代,所以这似乎是可能的。

我刚刚想出了一个如何做到这一点的c#示例。假设您有以下递归函数,它的作用类似于poststorder遍历,AbcTreeNode是一个带有指针a、b、c的3元树。

public static void AbcRecursiveTraversal(this AbcTreeNode x, List<int> list) {
        if (x != null) {
            AbcRecursiveTraversal(x.a, list);
            AbcRecursiveTraversal(x.b, list);
            AbcRecursiveTraversal(x.c, list);
            list.Add(x.key);//finally visit root
        }
}

迭代解:

        int? address = null;
        AbcTreeNode x = null;
        x = root;
        address = A;
        stack.Push(x);
        stack.Push(null)    

        while (stack.Count > 0) {
            bool @return = x == null;

            if (@return == false) {

                switch (address) {
                    case A://   
                        stack.Push(x);
                        stack.Push(B);
                        x = x.a;
                        address = A;
                        break;
                    case B:
                        stack.Push(x);
                        stack.Push(C);
                        x = x.b;
                        address = A;
                        break;
                    case C:
                        stack.Push(x);
                        stack.Push(null);
                        x = x.c;
                        address = A;
                        break;
                    case null:
                        list_iterative.Add(x.key);
                        @return = true;
                        break;
                }

            }


            if (@return == true) {
                address = (int?)stack.Pop();
                x = (AbcTreeNode)stack.Pop();
            }


        }