我有一个数据集
category
cat a
cat b
cat a
我希望能够返回(显示唯一值和频率)
category freq
cat a 2
cat b 1
我有一个数据集
category
cat a
cat b
cat a
我希望能够返回(显示唯一值和频率)
category freq
cat a 2
cat b 1
当前回答
如果你的DataFrame有相同类型的值,你也可以在numpy.unique()中设置return_counts=True。
index, counts= np.unique(df.values,return_counts=True)
如果您的值是整数,则Np.bincount()可能更快。
其他回答
df.apply(pd.value_counts).fillna(0)
value_counts -返回包含唯一值计数的对象
在每一列中应用计数频率。如果你设置axis=1,你会得到每一行的频率
Fillna(0) -使输出更花哨。更改NaN为0
下面的代码为名为“smaller_dat1”的数据帧中的“Total_score”列中的各种值创建频率表,然后返回值“300”在该列中出现的次数。
valuec = smaller_dat1.Total_score.value_counts()
valuec.loc[300]
使用value_counts()作为@DSM注释。
In [37]:
df = pd.DataFrame({'a':list('abssbab')})
df['a'].value_counts()
Out[37]:
b 3
a 2
s 2
dtype: int64
还有groupby和count。在这里有很多方法可以剥猫皮。
In [38]:
df.groupby('a').count()
Out[38]:
a
a
a 2
b 3
s 2
[3 rows x 1 columns]
查看在线文档。
如果你想将频率添加回原始数据帧,使用transform返回一个对齐的索引:
In [41]:
df['freq'] = df.groupby('a')['a'].transform('count')
df
Out[41]:
a freq
0 a 2
1 b 3
2 s 2
3 s 2
4 b 3
5 a 2
6 b 3
[7 rows x 2 columns]
对df中的多个列使用列表理解和value_counts
[my_series[c].value_counts() for c in list(my_series.select_dtypes(include=['O']).columns)]
https://stackoverflow.com/a/28192263/786326
df.category.value_counts()
这一小行代码将提供您想要的输出。
如果列名中有空格,则可以使用
df['category'].value_counts()