我有一个数据集
category
cat a
cat b
cat a
我希望能够返回(显示唯一值和频率)
category freq
cat a 2
cat b 1
我有一个数据集
category
cat a
cat b
cat a
我希望能够返回(显示唯一值和频率)
category freq
cat a 2
cat b 1
当前回答
@metatoaster已经指出了这一点。 去柜台。它的速度非常快。
import pandas as pd
from collections import Counter
import timeit
import numpy as np
df = pd.DataFrame(np.random.randint(1, 10000, (100, 2)), columns=["NumA", "NumB"])
计时器
%timeit -n 10000 df['NumA'].value_counts()
# 10000 loops, best of 3: 715 µs per loop
%timeit -n 10000 df['NumA'].value_counts().to_dict()
# 10000 loops, best of 3: 796 µs per loop
%timeit -n 10000 Counter(df['NumA'])
# 10000 loops, best of 3: 74 µs per loop
%timeit -n 10000 df.groupby(['NumA']).count()
# 10000 loops, best of 3: 1.29 ms per loop
干杯!
其他回答
n_values = data.income.value_counts()
第一个唯一值计数
n_at_most_50k = n_values[0]
第二个唯一值计数
n_greater_50k = n_values[1]
n_values
输出:
<=50K 34014
>50K 11208
Name: income, dtype: int64
输出:
n_greater_50k,n_at_most_50k:-
(11208, 34014)
@metatoaster已经指出了这一点。 去柜台。它的速度非常快。
import pandas as pd
from collections import Counter
import timeit
import numpy as np
df = pd.DataFrame(np.random.randint(1, 10000, (100, 2)), columns=["NumA", "NumB"])
计时器
%timeit -n 10000 df['NumA'].value_counts()
# 10000 loops, best of 3: 715 µs per loop
%timeit -n 10000 df['NumA'].value_counts().to_dict()
# 10000 loops, best of 3: 796 µs per loop
%timeit -n 10000 Counter(df['NumA'])
# 10000 loops, best of 3: 74 µs per loop
%timeit -n 10000 df.groupby(['NumA']).count()
# 10000 loops, best of 3: 1.29 ms per loop
干杯!
如果你想应用到所有列,你可以使用:
df.apply(pd.value_counts)
这将对每一列应用一个基于列的聚合函数(在本例中为value_counts)。
df.category.value_counts()
这一小行代码将提供您想要的输出。
如果列名中有空格,则可以使用
df['category'].value_counts()
你也可以用pandas先把你的列作为类别广播,例如dtype="category"。
cats = ['client', 'hotel', 'currency', 'ota', 'user_country']
df[cats] = df[cats].astype('category')
然后调用describe:
df[cats].describe()
这将给你一个很好的值计数表和更多的东西:):
client hotel currency ota user_country
count 852845 852845 852845 852845 852845
unique 2554 17477 132 14 219
top 2198 13202 USD Hades US
freq 102562 8847 516500 242734 340992