我有一个数据集
category
cat a
cat b
cat a
我希望能够返回(显示唯一值和频率)
category freq
cat a 2
cat b 1
我有一个数据集
category
cat a
cat b
cat a
我希望能够返回(显示唯一值和频率)
category freq
cat a 2
cat b 1
当前回答
df.category.value_counts()
这一小行代码将提供您想要的输出。
如果列名中有空格,则可以使用
df['category'].value_counts()
其他回答
我相信这应该工作的任何DataFrame列列表。
def column_list(x):
column_list_df = []
for col_name in x.columns:
y = col_name, len(x[col_name].unique())
column_list_df.append(y)
return pd.DataFrame(column_list_df)
column_list_df.rename(columns={0: "Feature", 1: "Value_count"})
函数“column_list”检查列名,然后检查每个列值的唯一性。
df.category.value_counts()
这一小行代码将提供您想要的输出。
如果列名中有空格,则可以使用
df['category'].value_counts()
df.apply(pd.value_counts).fillna(0)
value_counts -返回包含唯一值计数的对象
在每一列中应用计数频率。如果你设置axis=1,你会得到每一行的频率
Fillna(0) -使输出更花哨。更改NaN为0
正如大家所说,更快的解决方法是:
df.column_to_analyze.value_counts()
但是如果你想在你的数据框架中使用输出,使用这个模式:
df input:
category
cat a
cat b
cat a
df output:
category counts
cat a 2
cat b 1
cat a 2
你可以这样做:
df['counts'] = df.category.map(df.category.value_counts())
df
在0.18.1中,groupby和count没有给出唯一值的频率:
>>> df
a
0 a
1 b
2 s
3 s
4 b
5 a
6 b
>>> df.groupby('a').count()
Empty DataFrame
Columns: []
Index: [a, b, s]
然而,唯一的值和它们的频率很容易通过大小来确定:
>>> df.groupby('a').size()
a
a 2
b 3
s 2
使用df.a.value_counts(),默认情况下返回排序后的值(降序排列,即最大值在前)。