我有一个数据集
category
cat a
cat b
cat a
我希望能够返回(显示唯一值和频率)
category freq
cat a 2
cat b 1
我有一个数据集
category
cat a
cat b
cat a
我希望能够返回(显示唯一值和频率)
category freq
cat a 2
cat b 1
当前回答
your data:
|category|
cat a
cat b
cat a
解决方案:
df['freq'] = df.groupby('category')['category'].transform('count')
df = df.drop_duplicates()
其他回答
在0.18.1中,groupby和count没有给出唯一值的频率:
>>> df
a
0 a
1 b
2 s
3 s
4 b
5 a
6 b
>>> df.groupby('a').count()
Empty DataFrame
Columns: []
Index: [a, b, s]
然而,唯一的值和它们的频率很容易通过大小来确定:
>>> df.groupby('a').size()
a
a 2
b 3
s 2
使用df.a.value_counts(),默认情况下返回排序后的值(降序排列,即最大值在前)。
如果你想应用到所有列,你可以使用:
df.apply(pd.value_counts)
这将对每一列应用一个基于列的聚合函数(在本例中为value_counts)。
df.category.value_counts()
这一小行代码将提供您想要的输出。
如果列名中有空格,则可以使用
df['category'].value_counts()
对df中的多个列使用列表理解和value_counts
[my_series[c].value_counts() for c in list(my_series.select_dtypes(include=['O']).columns)]
https://stackoverflow.com/a/28192263/786326
@metatoaster已经指出了这一点。 去柜台。它的速度非常快。
import pandas as pd
from collections import Counter
import timeit
import numpy as np
df = pd.DataFrame(np.random.randint(1, 10000, (100, 2)), columns=["NumA", "NumB"])
计时器
%timeit -n 10000 df['NumA'].value_counts()
# 10000 loops, best of 3: 715 µs per loop
%timeit -n 10000 df['NumA'].value_counts().to_dict()
# 10000 loops, best of 3: 796 µs per loop
%timeit -n 10000 Counter(df['NumA'])
# 10000 loops, best of 3: 74 µs per loop
%timeit -n 10000 df.groupby(['NumA']).count()
# 10000 loops, best of 3: 1.29 ms per loop
干杯!