我有一个数据集
category
cat a
cat b
cat a
我希望能够返回(显示唯一值和频率)
category freq
cat a 2
cat b 1
我有一个数据集
category
cat a
cat b
cat a
我希望能够返回(显示唯一值和频率)
category freq
cat a 2
cat b 1
当前回答
your data:
|category|
cat a
cat b
cat a
解决方案:
df['freq'] = df.groupby('category')['category'].transform('count')
df = df.drop_duplicates()
其他回答
使用value_counts()作为@DSM注释。
In [37]:
df = pd.DataFrame({'a':list('abssbab')})
df['a'].value_counts()
Out[37]:
b 3
a 2
s 2
dtype: int64
还有groupby和count。在这里有很多方法可以剥猫皮。
In [38]:
df.groupby('a').count()
Out[38]:
a
a
a 2
b 3
s 2
[3 rows x 1 columns]
查看在线文档。
如果你想将频率添加回原始数据帧,使用transform返回一个对齐的索引:
In [41]:
df['freq'] = df.groupby('a')['a'].transform('count')
df
Out[41]:
a freq
0 a 2
1 b 3
2 s 2
3 s 2
4 b 3
5 a 2
6 b 3
[7 rows x 2 columns]
在0.18.1中,groupby和count没有给出唯一值的频率:
>>> df
a
0 a
1 b
2 s
3 s
4 b
5 a
6 b
>>> df.groupby('a').count()
Empty DataFrame
Columns: []
Index: [a, b, s]
然而,唯一的值和它们的频率很容易通过大小来确定:
>>> df.groupby('a').size()
a
a 2
b 3
s 2
使用df.a.value_counts(),默认情况下返回排序后的值(降序排列,即最大值在前)。
正如大家所说,更快的解决方法是:
df.column_to_analyze.value_counts()
但是如果你想在你的数据框架中使用输出,使用这个模式:
df input:
category
cat a
cat b
cat a
df output:
category counts
cat a 2
cat b 1
cat a 2
你可以这样做:
df['counts'] = df.category.map(df.category.value_counts())
df
df.category.value_counts()
这一小行代码将提供您想要的输出。
如果列名中有空格,则可以使用
df['category'].value_counts()
如果没有任何库,你可以这样做:
def to_frequency_table(data):
frequencytable = {}
for key in data:
if key in frequencytable:
frequencytable[key] += 1
else:
frequencytable[key] = 1
return frequencytable
例子:
to_frequency_table([1,1,1,1,2,3,4,4])
>>> {1: 4, 2: 1, 3: 1, 4: 2}