我有一个数据集

category
cat a
cat b
cat a

我希望能够返回(显示唯一值和频率)

category   freq 
cat a       2
cat b       1

当前回答

我相信这应该工作的任何DataFrame列列表。

def column_list(x):
    column_list_df = []
    for col_name in x.columns:
        y = col_name, len(x[col_name].unique())
        column_list_df.append(y)
return pd.DataFrame(column_list_df)

column_list_df.rename(columns={0: "Feature", 1: "Value_count"})

函数“column_list”检查列名,然后检查每个列值的唯一性。

其他回答

n_values = data.income.value_counts()

第一个唯一值计数

n_at_most_50k = n_values[0]

第二个唯一值计数

n_greater_50k = n_values[1]

n_values

输出:

<=50K    34014
>50K     11208

Name: income, dtype: int64

输出:

n_greater_50k,n_at_most_50k:-
(11208, 34014)

如果没有任何库,你可以这样做:

def to_frequency_table(data):
    frequencytable = {}
    for key in data:
        if key in frequencytable:
            frequencytable[key] += 1
        else:
            frequencytable[key] = 1
    return frequencytable

例子:

to_frequency_table([1,1,1,1,2,3,4,4])
>>> {1: 4, 2: 1, 3: 1, 4: 2}
df.apply(pd.value_counts).fillna(0)

value_counts -返回包含唯一值计数的对象

在每一列中应用计数频率。如果你设置axis=1,你会得到每一行的频率

Fillna(0) -使输出更花哨。更改NaN为0

对df中的多个列使用列表理解和value_counts

[my_series[c].value_counts() for c in list(my_series.select_dtypes(include=['O']).columns)]

https://stackoverflow.com/a/28192263/786326

正如大家所说,更快的解决方法是:

df.column_to_analyze.value_counts()

但是如果你想在你的数据框架中使用输出,使用这个模式:

df input:

category
cat a
cat b
cat a

df output: 

category   counts
cat a        2
cat b        1 
cat a        2

你可以这样做:

df['counts'] = df.category.map(df.category.value_counts())
df