我有一个数据集

category
cat a
cat b
cat a

我希望能够返回(显示唯一值和频率)

category   freq 
cat a       2
cat b       1

当前回答

如果你想应用到所有列,你可以使用:

df.apply(pd.value_counts)

这将对每一列应用一个基于列的聚合函数(在本例中为value_counts)。

其他回答

正如大家所说,更快的解决方法是:

df.column_to_analyze.value_counts()

但是如果你想在你的数据框架中使用输出,使用这个模式:

df input:

category
cat a
cat b
cat a

df output: 

category   counts
cat a        2
cat b        1 
cat a        2

你可以这样做:

df['counts'] = df.category.map(df.category.value_counts())
df 

如果没有任何库,你可以这样做:

def to_frequency_table(data):
    frequencytable = {}
    for key in data:
        if key in frequencytable:
            frequencytable[key] += 1
        else:
            frequencytable[key] = 1
    return frequencytable

例子:

to_frequency_table([1,1,1,1,2,3,4,4])
>>> {1: 4, 2: 1, 3: 1, 4: 2}

下面的代码为名为“smaller_dat1”的数据帧中的“Total_score”列中的各种值创建频率表,然后返回值“300”在该列中出现的次数。

valuec = smaller_dat1.Total_score.value_counts()
valuec.loc[300]

我相信这应该工作的任何DataFrame列列表。

def column_list(x):
    column_list_df = []
    for col_name in x.columns:
        y = col_name, len(x[col_name].unique())
        column_list_df.append(y)
return pd.DataFrame(column_list_df)

column_list_df.rename(columns={0: "Feature", 1: "Value_count"})

函数“column_list”检查列名,然后检查每个列值的唯一性。

如果你的DataFrame有相同类型的值,你也可以在numpy.unique()中设置return_counts=True。

index, counts= np.unique(df.values,return_counts=True)

如果您的值是整数,则Np.bincount()可能更快。