我有一个数据集
category
cat a
cat b
cat a
我希望能够返回(显示唯一值和频率)
category freq
cat a 2
cat b 1
我有一个数据集
category
cat a
cat b
cat a
我希望能够返回(显示唯一值和频率)
category freq
cat a 2
cat b 1
当前回答
正如大家所说,更快的解决方法是:
df.column_to_analyze.value_counts()
但是如果你想在你的数据框架中使用输出,使用这个模式:
df input:
category
cat a
cat b
cat a
df output:
category counts
cat a 2
cat b 1
cat a 2
你可以这样做:
df['counts'] = df.category.map(df.category.value_counts())
df
其他回答
df.apply(pd.value_counts).fillna(0)
value_counts -返回包含唯一值计数的对象
在每一列中应用计数频率。如果你设置axis=1,你会得到每一行的频率
Fillna(0) -使输出更花哨。更改NaN为0
我相信这应该工作的任何DataFrame列列表。
def column_list(x):
column_list_df = []
for col_name in x.columns:
y = col_name, len(x[col_name].unique())
column_list_df.append(y)
return pd.DataFrame(column_list_df)
column_list_df.rename(columns={0: "Feature", 1: "Value_count"})
函数“column_list”检查列名,然后检查每个列值的唯一性。
如果你的DataFrame有相同类型的值,你也可以在numpy.unique()中设置return_counts=True。
index, counts= np.unique(df.values,return_counts=True)
如果您的值是整数,则Np.bincount()可能更快。
your data:
|category|
cat a
cat b
cat a
解决方案:
df['freq'] = df.groupby('category')['category'].transform('count')
df = df.drop_duplicates()
@metatoaster已经指出了这一点。 去柜台。它的速度非常快。
import pandas as pd
from collections import Counter
import timeit
import numpy as np
df = pd.DataFrame(np.random.randint(1, 10000, (100, 2)), columns=["NumA", "NumB"])
计时器
%timeit -n 10000 df['NumA'].value_counts()
# 10000 loops, best of 3: 715 µs per loop
%timeit -n 10000 df['NumA'].value_counts().to_dict()
# 10000 loops, best of 3: 796 µs per loop
%timeit -n 10000 Counter(df['NumA'])
# 10000 loops, best of 3: 74 µs per loop
%timeit -n 10000 df.groupby(['NumA']).count()
# 10000 loops, best of 3: 1.29 ms per loop
干杯!