我有一个数据集

category
cat a
cat b
cat a

我希望能够返回(显示唯一值和频率)

category   freq 
cat a       2
cat b       1

当前回答

如果没有任何库,你可以这样做:

def to_frequency_table(data):
    frequencytable = {}
    for key in data:
        if key in frequencytable:
            frequencytable[key] += 1
        else:
            frequencytable[key] = 1
    return frequencytable

例子:

to_frequency_table([1,1,1,1,2,3,4,4])
>>> {1: 4, 2: 1, 3: 1, 4: 2}

其他回答

df.apply(pd.value_counts).fillna(0)

value_counts -返回包含唯一值计数的对象

在每一列中应用计数频率。如果你设置axis=1,你会得到每一行的频率

Fillna(0) -使输出更花哨。更改NaN为0

@metatoaster已经指出了这一点。 去柜台。它的速度非常快。

import pandas as pd
from collections import Counter
import timeit
import numpy as np

df = pd.DataFrame(np.random.randint(1, 10000, (100, 2)), columns=["NumA", "NumB"])

计时器

%timeit -n 10000 df['NumA'].value_counts()
# 10000 loops, best of 3: 715 µs per loop

%timeit -n 10000 df['NumA'].value_counts().to_dict()
# 10000 loops, best of 3: 796 µs per loop

%timeit -n 10000 Counter(df['NumA'])
# 10000 loops, best of 3: 74 µs per loop

%timeit -n 10000 df.groupby(['NumA']).count()
# 10000 loops, best of 3: 1.29 ms per loop

干杯!

如果你的DataFrame有相同类型的值,你也可以在numpy.unique()中设置return_counts=True。

index, counts= np.unique(df.values,return_counts=True)

如果您的值是整数,则Np.bincount()可能更快。

你也可以用pandas先把你的列作为类别广播,例如dtype="category"。

cats = ['client', 'hotel', 'currency', 'ota', 'user_country']

df[cats] = df[cats].astype('category')

然后调用describe:

df[cats].describe()

这将给你一个很好的值计数表和更多的东西:):

    client  hotel   currency    ota user_country
count   852845  852845  852845  852845  852845
unique  2554    17477   132 14  219
top 2198    13202   USD Hades   US
freq    102562  8847    516500  242734  340992

使用value_counts()作为@DSM注释。

In [37]:
df = pd.DataFrame({'a':list('abssbab')})
df['a'].value_counts()

Out[37]:

b    3
a    2
s    2
dtype: int64

还有groupby和count。在这里有很多方法可以剥猫皮。

In [38]:
df.groupby('a').count()

Out[38]:

   a
a   
a  2
b  3
s  2

[3 rows x 1 columns]

查看在线文档。

如果你想将频率添加回原始数据帧,使用transform返回一个对齐的索引:

In [41]:
df['freq'] = df.groupby('a')['a'].transform('count')
df

Out[41]:

   a freq
0  a    2
1  b    3
2  s    2
3  s    2
4  b    3
5  a    2
6  b    3

[7 rows x 2 columns]