我有一个数据集

category
cat a
cat b
cat a

我希望能够返回(显示唯一值和频率)

category   freq 
cat a       2
cat b       1

当前回答

如果没有任何库,你可以这样做:

def to_frequency_table(data):
    frequencytable = {}
    for key in data:
        if key in frequencytable:
            frequencytable[key] += 1
        else:
            frequencytable[key] = 1
    return frequencytable

例子:

to_frequency_table([1,1,1,1,2,3,4,4])
>>> {1: 4, 2: 1, 3: 1, 4: 2}

其他回答

n_values = data.income.value_counts()

第一个唯一值计数

n_at_most_50k = n_values[0]

第二个唯一值计数

n_greater_50k = n_values[1]

n_values

输出:

<=50K    34014
>50K     11208

Name: income, dtype: int64

输出:

n_greater_50k,n_at_most_50k:-
(11208, 34014)

正如大家所说,更快的解决方法是:

df.column_to_analyze.value_counts()

但是如果你想在你的数据框架中使用输出,使用这个模式:

df input:

category
cat a
cat b
cat a

df output: 

category   counts
cat a        2
cat b        1 
cat a        2

你可以这样做:

df['counts'] = df.category.map(df.category.value_counts())
df 

你也可以用pandas先把你的列作为类别广播,例如dtype="category"。

cats = ['client', 'hotel', 'currency', 'ota', 'user_country']

df[cats] = df[cats].astype('category')

然后调用describe:

df[cats].describe()

这将给你一个很好的值计数表和更多的东西:):

    client  hotel   currency    ota user_country
count   852845  852845  852845  852845  852845
unique  2554    17477   132 14  219
top 2198    13202   USD Hades   US
freq    102562  8847    516500  242734  340992
your data:

|category|
cat a
cat b
cat a

解决方案:

 df['freq'] = df.groupby('category')['category'].transform('count')
 df =  df.drop_duplicates()
df.category.value_counts()

这一小行代码将提供您想要的输出。

如果列名中有空格,则可以使用

df['category'].value_counts()