在三维空间中有两个点

a = (ax, ay, az)
b = (bx, by, bz)

我想计算它们之间的距离:

dist = sqrt((ax-bx)^2 + (ay-by)^2 + (az-bz)^2)

我如何用NumPy做到这一点?我有:

import numpy
a = numpy.array((ax, ay, az))
b = numpy.array((bx, by, bz))

当前回答

你可以减去向量,然后内积。

以你为榜样,

a = numpy.array((xa, ya, za))
b = numpy.array((xb, yb, zb))

tmp = a - b
sum_squared = numpy.dot(tmp.T, tmp)
result = numpy.sqrt(sum_squared)

其他回答

我喜欢np。点(点积):

a = numpy.array((xa,ya,za))
b = numpy.array((xb,yb,zb))

distance = (np.dot(a-b,a-b))**.5

对于那些对一次计算多个距离感兴趣的人来说,我已经使用perfplot(我的一个小项目)做了一些比较。

第一个建议是组织数据,使数组具有维数(3,n)(显然是c连续的)。如果加法发生在连续的第一维中,事情会更快,如果你使用带有axis=0的sqrt-sum, linalg,它也不会太重要。轴=0的范数,或

a_min_b = a - b
numpy.sqrt(numpy.einsum('ij,ij->j', a_min_b, a_min_b))

这是,以微弱优势,最快的变种。(这实际上也只适用于一行。)

在第二个轴上求和的变量,轴=1,都要慢得多。


代码重现情节:

import numpy
import perfplot
from scipy.spatial import distance


def linalg_norm(data):
    a, b = data[0]
    return numpy.linalg.norm(a - b, axis=1)


def linalg_norm_T(data):
    a, b = data[1]
    return numpy.linalg.norm(a - b, axis=0)


def sqrt_sum(data):
    a, b = data[0]
    return numpy.sqrt(numpy.sum((a - b) ** 2, axis=1))


def sqrt_sum_T(data):
    a, b = data[1]
    return numpy.sqrt(numpy.sum((a - b) ** 2, axis=0))


def scipy_distance(data):
    a, b = data[0]
    return list(map(distance.euclidean, a, b))


def sqrt_einsum(data):
    a, b = data[0]
    a_min_b = a - b
    return numpy.sqrt(numpy.einsum("ij,ij->i", a_min_b, a_min_b))


def sqrt_einsum_T(data):
    a, b = data[1]
    a_min_b = a - b
    return numpy.sqrt(numpy.einsum("ij,ij->j", a_min_b, a_min_b))


def setup(n):
    a = numpy.random.rand(n, 3)
    b = numpy.random.rand(n, 3)
    out0 = numpy.array([a, b])
    out1 = numpy.array([a.T, b.T])
    return out0, out1


b = perfplot.bench(
    setup=setup,
    n_range=[2 ** k for k in range(22)],
    kernels=[
        linalg_norm,
        linalg_norm_T,
        scipy_distance,
        sqrt_sum,
        sqrt_sum_T,
        sqrt_einsum,
        sqrt_einsum_T,
    ],
    xlabel="len(x), len(y)",
)
b.save("norm.png")

使用Python 3.8,这非常简单。

https://docs.python.org/3/library/math.html#math.dist

math.dist(p, q)

返回给定两点p和q之间的欧氏距离 作为坐标序列(或可迭代对象)。这两点一定有 相同的维度。 大致相当于: √(sum((px - qx) ** 2.0 for px, qx in zip(p, q)))

首先求两个矩阵的差。然后,使用numpy的multiply命令应用元素乘法。然后,求元素与新矩阵相乘的和。最后,求求和的平方根。

def findEuclideanDistance(a, b):
    euclidean_distance = a - b
    euclidean_distance = np.sum(np.multiply(euclidean_distance, euclidean_distance))
    euclidean_distance = np.sqrt(euclidean_distance)
    return euclidean_distance

这个公式很容易用

distance = np.sqrt(np.sum(np.square(a-b)))

它实际上只是使用毕达哥拉斯定理来计算距离,通过将Δx, Δy和Δz的平方相加,并对结果进行根运算。