在三维空间中有两个点
a = (ax, ay, az)
b = (bx, by, bz)
我想计算它们之间的距离:
dist = sqrt((ax-bx)^2 + (ay-by)^2 + (az-bz)^2)
我如何用NumPy做到这一点?我有:
import numpy
a = numpy.array((ax, ay, az))
b = numpy.array((bx, by, bz))
在三维空间中有两个点
a = (ax, ay, az)
b = (bx, by, bz)
我想计算它们之间的距离:
dist = sqrt((ax-bx)^2 + (ay-by)^2 + (az-bz)^2)
我如何用NumPy做到这一点?我有:
import numpy
a = numpy.array((ax, ay, az))
b = numpy.array((bx, by, bz))
当前回答
用NumPy或一般的Python做这件事的最好方法是什么?我有:
最好的方法是最安全的,也是最快的
我建议使用低流量来获得可靠的结果,因为与编写自己的平方根计算器相比,下溢和溢出的几率非常小
我们来看看数学。函数,np。Hypot vs vanilla np.sqrt(np.sum(np.数组([i, j, k])) ** 2,轴=1))
i, j, k = 1e+200, 1e+200, 1e+200
math.hypot(i, j, k)
# 1.7320508075688773e+200
np.sqrt(np.sum((np.array([i, j, k])) ** 2))
# RuntimeWarning: overflow encountered in square
速度智慧的数学。Hypot看起来更好
%%timeit
math.hypot(i, j, k)
# 100 ns ± 1.05 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)
%%timeit
np.sqrt(np.sum((np.array([i, j, k])) ** 2))
# 6.41 µs ± 33.3 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
下溢
i, j = 1e-200, 1e-200
np.sqrt(i**2+j**2)
# 0.0
溢出
i, j = 1e+200, 1e+200
np.sqrt(i**2+j**2)
# inf
没有下溢
i, j = 1e-200, 1e-200
np.hypot(i, j)
# 1.414213562373095e-200
没有溢出
i, j = 1e+200, 1e+200
np.hypot(i, j)
# 1.414213562373095e+200
请参考
其他回答
这种解决问题方法的另一个例子:
def dist(x,y):
return numpy.sqrt(numpy.sum((x-y)**2))
a = numpy.array((xa,ya,za))
b = numpy.array((xb,yb,zb))
dist_a_b = dist(a,b)
你可以减去向量,然后内积。
以你为榜样,
a = numpy.array((xa, ya, za))
b = numpy.array((xb, yb, zb))
tmp = a - b
sum_squared = numpy.dot(tmp.T, tmp)
result = numpy.sqrt(sum_squared)
有了a和b,你可以用also:
distance = np.sqrt(np.sum((a-b)**2))
从Python 3.8开始,math模块直接提供dist函数,它返回两点之间的欧几里得距离(以元组或坐标列表的形式给出):
from math import dist
dist((1, 2, 6), (-2, 3, 2)) # 5.0990195135927845
如果你使用列表:
dist([1, 2, 6], [-2, 3, 2]) # 5.0990195135927845
这个公式很容易用
distance = np.sqrt(np.sum(np.square(a-b)))
它实际上只是使用毕达哥拉斯定理来计算距离,通过将Δx, Δy和Δz的平方相加,并对结果进行根运算。