在三维空间中有两个点
a = (ax, ay, az)
b = (bx, by, bz)
我想计算它们之间的距离:
dist = sqrt((ax-bx)^2 + (ay-by)^2 + (az-bz)^2)
我如何用NumPy做到这一点?我有:
import numpy
a = numpy.array((ax, ay, az))
b = numpy.array((bx, by, bz))
在三维空间中有两个点
a = (ax, ay, az)
b = (bx, by, bz)
我想计算它们之间的距离:
dist = sqrt((ax-bx)^2 + (ay-by)^2 + (az-bz)^2)
我如何用NumPy做到这一点?我有:
import numpy
a = numpy.array((ax, ay, az))
b = numpy.array((bx, by, bz))
当前回答
这种解决问题方法的另一个例子:
def dist(x,y):
return numpy.sqrt(numpy.sum((x-y)**2))
a = numpy.array((xa,ya,za))
b = numpy.array((xb,yb,zb))
dist_a_b = dist(a,b)
其他回答
import math
dist = math.hypot(math.hypot(xa-xb, ya-yb), za-zb)
从Python 3.8开始,math模块直接提供dist函数,它返回两点之间的欧几里得距离(以元组或坐标列表的形式给出):
from math import dist
dist((1, 2, 6), (-2, 3, 2)) # 5.0990195135927845
如果你使用列表:
dist([1, 2, 6], [-2, 3, 2]) # 5.0990195135927845
import numpy as np
# any two python array as two points
a = [0, 0]
b = [3, 4]
首先将list更改为numpy数组,并像这样做:print(np.linalg.norm(np.array(a) - np.array(b)))。第二种方法直接从python列表as: print(np.linalg.norm(np.subtract(a,b)))
用NumPy或一般的Python做这件事的最好方法是什么?我有:
最好的方法是最安全的,也是最快的
我建议使用低流量来获得可靠的结果,因为与编写自己的平方根计算器相比,下溢和溢出的几率非常小
我们来看看数学。函数,np。Hypot vs vanilla np.sqrt(np.sum(np.数组([i, j, k])) ** 2,轴=1))
i, j, k = 1e+200, 1e+200, 1e+200
math.hypot(i, j, k)
# 1.7320508075688773e+200
np.sqrt(np.sum((np.array([i, j, k])) ** 2))
# RuntimeWarning: overflow encountered in square
速度智慧的数学。Hypot看起来更好
%%timeit
math.hypot(i, j, k)
# 100 ns ± 1.05 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)
%%timeit
np.sqrt(np.sum((np.array([i, j, k])) ** 2))
# 6.41 µs ± 33.3 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
下溢
i, j = 1e-200, 1e-200
np.sqrt(i**2+j**2)
# 0.0
溢出
i, j = 1e+200, 1e+200
np.sqrt(i**2+j**2)
# inf
没有下溢
i, j = 1e-200, 1e-200
np.hypot(i, j)
# 1.414213562373095e-200
没有溢出
i, j = 1e+200, 1e+200
np.hypot(i, j)
# 1.414213562373095e+200
请参考
这种解决问题方法的另一个例子:
def dist(x,y):
return numpy.sqrt(numpy.sum((x-y)**2))
a = numpy.array((xa,ya,za))
b = numpy.array((xb,yb,zb))
dist_a_b = dist(a,b)