在三维空间中有两个点

a = (ax, ay, az)
b = (bx, by, bz)

我想计算它们之间的距离:

dist = sqrt((ax-bx)^2 + (ay-by)^2 + (az-bz)^2)

我如何用NumPy做到这一点?我有:

import numpy
a = numpy.array((ax, ay, az))
b = numpy.array((bx, by, bz))

当前回答

import math

dist = math.hypot(math.hypot(xa-xb, ya-yb), za-zb)

其他回答

一个很好的句子:

dist = numpy.linalg.norm(a-b)

但是,如果速度是一个问题,我建议在您的机器上进行试验。我发现,在我的机器上,使用数学库的√rt和**运算符对平方进行运算要比使用一行NumPy解决方案快得多。

我用这个简单的程序进行了测试:

#!/usr/bin/python
import math
import numpy
from random import uniform

def fastest_calc_dist(p1,p2):
    return math.sqrt((p2[0] - p1[0]) ** 2 +
                     (p2[1] - p1[1]) ** 2 +
                     (p2[2] - p1[2]) ** 2)

def math_calc_dist(p1,p2):
    return math.sqrt(math.pow((p2[0] - p1[0]), 2) +
                     math.pow((p2[1] - p1[1]), 2) +
                     math.pow((p2[2] - p1[2]), 2))

def numpy_calc_dist(p1,p2):
    return numpy.linalg.norm(numpy.array(p1)-numpy.array(p2))

TOTAL_LOCATIONS = 1000

p1 = dict()
p2 = dict()
for i in range(0, TOTAL_LOCATIONS):
    p1[i] = (uniform(0,1000),uniform(0,1000),uniform(0,1000))
    p2[i] = (uniform(0,1000),uniform(0,1000),uniform(0,1000))

total_dist = 0
for i in range(0, TOTAL_LOCATIONS):
    for j in range(0, TOTAL_LOCATIONS):
        dist = fastest_calc_dist(p1[i], p2[j]) #change this line for testing
        total_dist += dist

print total_dist

在我的机器上,math_calc_dist运行得比numpy_calc_dist快得多:1.5秒对23.5秒。

为了在fastst_calc_dist和math_calc_dist之间获得一个可测量的差异,我必须将TOTAL_LOCATIONS增加到6000。然后,fastst_calc_dist耗时约50秒,math_calc_dist耗时约60秒。

您也可以尝试使用numpy。SQRT和numpy。不过这两个运算都比我机器上的数学运算要慢。

我的测试使用Python 2.6.6运行。

我在matplotlib中找到了一个“dist”函数。mlab,但我认为它不够方便。

我把它贴在这里只是为了参考。

import numpy as np
import matplotlib as plt

a = np.array([1, 2, 3])
b = np.array([2, 3, 4])

# Distance between a and b
dis = plt.mlab.dist(a, b)

有了a和b,你可以用also:

distance = np.sqrt(np.sum((a-b)**2))

你可以减去向量,然后内积。

以你为榜样,

a = numpy.array((xa, ya, za))
b = numpy.array((xb, yb, zb))

tmp = a - b
sum_squared = numpy.dot(tmp.T, tmp)
result = numpy.sqrt(sum_squared)

使用scipy.spatial.distance.euclidean:

from scipy.spatial import distance
a = (1, 2, 3)
b = (4, 5, 6)
dst = distance.euclidean(a, b)