在三维空间中有两个点

a = (ax, ay, az)
b = (bx, by, bz)

我想计算它们之间的距离:

dist = sqrt((ax-bx)^2 + (ay-by)^2 + (az-bz)^2)

我如何用NumPy做到这一点?我有:

import numpy
a = numpy.array((ax, ay, az))
b = numpy.array((bx, by, bz))

当前回答

import math

dist = math.hypot(math.hypot(xa-xb, ya-yb), za-zb)

其他回答

这里有一些简洁的Python欧几里得距离代码,给出了Python中以列表表示的两个点。

def distance(v1,v2): 
    return sum([(x-y)**2 for (x,y) in zip(v1,v2)])**(0.5)

这个公式很容易用

distance = np.sqrt(np.sum(np.square(a-b)))

它实际上只是使用毕达哥拉斯定理来计算距离,通过将Δx, Δy和Δz的平方相加,并对结果进行根运算。

使用scipy.spatial.distance.euclidean:

from scipy.spatial import distance
a = (1, 2, 3)
b = (4, 5, 6)
dst = distance.euclidean(a, b)

这种解决问题方法的另一个例子:

def dist(x,y):   
    return numpy.sqrt(numpy.sum((x-y)**2))

a = numpy.array((xa,ya,za))
b = numpy.array((xb,yb,zb))
dist_a_b = dist(a,b)

使用Python 3.8,这非常简单。

https://docs.python.org/3/library/math.html#math.dist

math.dist(p, q)

返回给定两点p和q之间的欧氏距离 作为坐标序列(或可迭代对象)。这两点一定有 相同的维度。 大致相当于: √(sum((px - qx) ** 2.0 for px, qx in zip(p, q)))