在三维空间中有两个点

a = (ax, ay, az)
b = (bx, by, bz)

我想计算它们之间的距离:

dist = sqrt((ax-bx)^2 + (ay-by)^2 + (az-bz)^2)

我如何用NumPy做到这一点?我有:

import numpy
a = numpy.array((ax, ay, az))
b = numpy.array((bx, by, bz))

当前回答

使用scipy.spatial.distance.euclidean:

from scipy.spatial import distance
a = (1, 2, 3)
b = (4, 5, 6)
dst = distance.euclidean(a, b)

其他回答

这里有一些简洁的Python欧几里得距离代码,给出了Python中以列表表示的两个点。

def distance(v1,v2): 
    return sum([(x-y)**2 for (x,y) in zip(v1,v2)])**(0.5)

这种解决问题方法的另一个例子:

def dist(x,y):   
    return numpy.sqrt(numpy.sum((x-y)**2))

a = numpy.array((xa,ya,za))
b = numpy.array((xb,yb,zb))
dist_a_b = dist(a,b)

对于大量的距离,我能想到的最快的解决方案是使用numexpr。在我的机器上,它比使用numpy einsum更快:

import numexpr as ne
import numpy as np
np.sqrt(ne.evaluate("sum((a_min_b)**2,axis=1)"))

对于那些对一次计算多个距离感兴趣的人来说,我已经使用perfplot(我的一个小项目)做了一些比较。

第一个建议是组织数据,使数组具有维数(3,n)(显然是c连续的)。如果加法发生在连续的第一维中,事情会更快,如果你使用带有axis=0的sqrt-sum, linalg,它也不会太重要。轴=0的范数,或

a_min_b = a - b
numpy.sqrt(numpy.einsum('ij,ij->j', a_min_b, a_min_b))

这是,以微弱优势,最快的变种。(这实际上也只适用于一行。)

在第二个轴上求和的变量,轴=1,都要慢得多。


代码重现情节:

import numpy
import perfplot
from scipy.spatial import distance


def linalg_norm(data):
    a, b = data[0]
    return numpy.linalg.norm(a - b, axis=1)


def linalg_norm_T(data):
    a, b = data[1]
    return numpy.linalg.norm(a - b, axis=0)


def sqrt_sum(data):
    a, b = data[0]
    return numpy.sqrt(numpy.sum((a - b) ** 2, axis=1))


def sqrt_sum_T(data):
    a, b = data[1]
    return numpy.sqrt(numpy.sum((a - b) ** 2, axis=0))


def scipy_distance(data):
    a, b = data[0]
    return list(map(distance.euclidean, a, b))


def sqrt_einsum(data):
    a, b = data[0]
    a_min_b = a - b
    return numpy.sqrt(numpy.einsum("ij,ij->i", a_min_b, a_min_b))


def sqrt_einsum_T(data):
    a, b = data[1]
    a_min_b = a - b
    return numpy.sqrt(numpy.einsum("ij,ij->j", a_min_b, a_min_b))


def setup(n):
    a = numpy.random.rand(n, 3)
    b = numpy.random.rand(n, 3)
    out0 = numpy.array([a, b])
    out1 = numpy.array([a.T, b.T])
    return out0, out1


b = perfplot.bench(
    setup=setup,
    n_range=[2 ** k for k in range(22)],
    kernels=[
        linalg_norm,
        linalg_norm_T,
        scipy_distance,
        sqrt_sum,
        sqrt_sum_T,
        sqrt_einsum,
        sqrt_einsum_T,
    ],
    xlabel="len(x), len(y)",
)
b.save("norm.png")
import math

dist = math.hypot(math.hypot(xa-xb, ya-yb), za-zb)