在三维空间中有两个点

a = (ax, ay, az)
b = (bx, by, bz)

我想计算它们之间的距离:

dist = sqrt((ax-bx)^2 + (ay-by)^2 + (az-bz)^2)

我如何用NumPy做到这一点?我有:

import numpy
a = numpy.array((ax, ay, az))
b = numpy.array((bx, by, bz))

当前回答

从Python 3.8开始,math模块直接提供dist函数,它返回两点之间的欧几里得距离(以元组或坐标列表的形式给出):

from math import dist

dist((1, 2, 6), (-2, 3, 2)) # 5.0990195135927845

如果你使用列表:

dist([1, 2, 6], [-2, 3, 2]) # 5.0990195135927845

其他回答

一个很好的句子:

dist = numpy.linalg.norm(a-b)

但是,如果速度是一个问题,我建议在您的机器上进行试验。我发现,在我的机器上,使用数学库的√rt和**运算符对平方进行运算要比使用一行NumPy解决方案快得多。

我用这个简单的程序进行了测试:

#!/usr/bin/python
import math
import numpy
from random import uniform

def fastest_calc_dist(p1,p2):
    return math.sqrt((p2[0] - p1[0]) ** 2 +
                     (p2[1] - p1[1]) ** 2 +
                     (p2[2] - p1[2]) ** 2)

def math_calc_dist(p1,p2):
    return math.sqrt(math.pow((p2[0] - p1[0]), 2) +
                     math.pow((p2[1] - p1[1]), 2) +
                     math.pow((p2[2] - p1[2]), 2))

def numpy_calc_dist(p1,p2):
    return numpy.linalg.norm(numpy.array(p1)-numpy.array(p2))

TOTAL_LOCATIONS = 1000

p1 = dict()
p2 = dict()
for i in range(0, TOTAL_LOCATIONS):
    p1[i] = (uniform(0,1000),uniform(0,1000),uniform(0,1000))
    p2[i] = (uniform(0,1000),uniform(0,1000),uniform(0,1000))

total_dist = 0
for i in range(0, TOTAL_LOCATIONS):
    for j in range(0, TOTAL_LOCATIONS):
        dist = fastest_calc_dist(p1[i], p2[j]) #change this line for testing
        total_dist += dist

print total_dist

在我的机器上,math_calc_dist运行得比numpy_calc_dist快得多:1.5秒对23.5秒。

为了在fastst_calc_dist和math_calc_dist之间获得一个可测量的差异,我必须将TOTAL_LOCATIONS增加到6000。然后,fastst_calc_dist耗时约50秒,math_calc_dist耗时约60秒。

您也可以尝试使用numpy。SQRT和numpy。不过这两个运算都比我机器上的数学运算要慢。

我的测试使用Python 2.6.6运行。

对于那些对一次计算多个距离感兴趣的人来说,我已经使用perfplot(我的一个小项目)做了一些比较。

第一个建议是组织数据,使数组具有维数(3,n)(显然是c连续的)。如果加法发生在连续的第一维中,事情会更快,如果你使用带有axis=0的sqrt-sum, linalg,它也不会太重要。轴=0的范数,或

a_min_b = a - b
numpy.sqrt(numpy.einsum('ij,ij->j', a_min_b, a_min_b))

这是,以微弱优势,最快的变种。(这实际上也只适用于一行。)

在第二个轴上求和的变量,轴=1,都要慢得多。


代码重现情节:

import numpy
import perfplot
from scipy.spatial import distance


def linalg_norm(data):
    a, b = data[0]
    return numpy.linalg.norm(a - b, axis=1)


def linalg_norm_T(data):
    a, b = data[1]
    return numpy.linalg.norm(a - b, axis=0)


def sqrt_sum(data):
    a, b = data[0]
    return numpy.sqrt(numpy.sum((a - b) ** 2, axis=1))


def sqrt_sum_T(data):
    a, b = data[1]
    return numpy.sqrt(numpy.sum((a - b) ** 2, axis=0))


def scipy_distance(data):
    a, b = data[0]
    return list(map(distance.euclidean, a, b))


def sqrt_einsum(data):
    a, b = data[0]
    a_min_b = a - b
    return numpy.sqrt(numpy.einsum("ij,ij->i", a_min_b, a_min_b))


def sqrt_einsum_T(data):
    a, b = data[1]
    a_min_b = a - b
    return numpy.sqrt(numpy.einsum("ij,ij->j", a_min_b, a_min_b))


def setup(n):
    a = numpy.random.rand(n, 3)
    b = numpy.random.rand(n, 3)
    out0 = numpy.array([a, b])
    out1 = numpy.array([a.T, b.T])
    return out0, out1


b = perfplot.bench(
    setup=setup,
    n_range=[2 ** k for k in range(22)],
    kernels=[
        linalg_norm,
        linalg_norm_T,
        scipy_distance,
        sqrt_sum,
        sqrt_sum_T,
        sqrt_einsum,
        sqrt_einsum_T,
    ],
    xlabel="len(x), len(y)",
)
b.save("norm.png")

使用Python 3.8,这非常简单。

https://docs.python.org/3/library/math.html#math.dist

math.dist(p, q)

返回给定两点p和q之间的欧氏距离 作为坐标序列(或可迭代对象)。这两点一定有 相同的维度。 大致相当于: √(sum((px - qx) ** 2.0 for px, qx in zip(p, q)))

从Python 3.8开始,math模块直接提供dist函数,它返回两点之间的欧几里得距离(以元组或坐标列表的形式给出):

from math import dist

dist((1, 2, 6), (-2, 3, 2)) # 5.0990195135927845

如果你使用列表:

dist([1, 2, 6], [-2, 3, 2]) # 5.0990195135927845

从Python 3.8开始

从Python 3.8开始,数学模块包含了math.dist()函数。 请看这里https://docs.python.org/3.8/library/math.html#math.dist。

数学。dist (p1, p2) 返回两点p1和p2之间的欧氏距离, 每一个都以坐标序列(或可迭代对象)给出。

import math
print( math.dist( (0,0),   (1,1)   )) # sqrt(2) -> 1.4142
print( math.dist( (0,0,0), (1,1,1) )) # sqrt(3) -> 1.7321