在三维空间中有两个点

a = (ax, ay, az)
b = (bx, by, bz)

我想计算它们之间的距离:

dist = sqrt((ax-bx)^2 + (ay-by)^2 + (az-bz)^2)

我如何用NumPy做到这一点?我有:

import numpy
a = numpy.array((ax, ay, az))
b = numpy.array((bx, by, bz))

当前回答

有了a和b,你可以用also:

distance = np.sqrt(np.sum((a-b)**2))

其他回答

这个公式很容易用

distance = np.sqrt(np.sum(np.square(a-b)))

它实际上只是使用毕达哥拉斯定理来计算距离,通过将Δx, Δy和Δz的平方相加,并对结果进行根运算。

使用scipy.spatial.distance.euclidean:

from scipy.spatial import distance
a = (1, 2, 3)
b = (4, 5, 6)
dst = distance.euclidean(a, b)

可以像下面这样做。我不知道它有多快,但它没有使用NumPy。

from math import sqrt
a = (1, 2, 3) # Data point 1
b = (4, 5, 6) # Data point 2
print sqrt(sum( (a - b)**2 for a, b in zip(a, b)))

从Python 3.8开始,math模块直接提供dist函数,它返回两点之间的欧几里得距离(以元组或坐标列表的形式给出):

from math import dist

dist((1, 2, 6), (-2, 3, 2)) # 5.0990195135927845

如果你使用列表:

dist([1, 2, 6], [-2, 3, 2]) # 5.0990195135927845

从Python 3.8开始

从Python 3.8开始,数学模块包含了math.dist()函数。 请看这里https://docs.python.org/3.8/library/math.html#math.dist。

数学。dist (p1, p2) 返回两点p1和p2之间的欧氏距离, 每一个都以坐标序列(或可迭代对象)给出。

import math
print( math.dist( (0,0),   (1,1)   )) # sqrt(2) -> 1.4142
print( math.dist( (0,0,0), (1,1,1) )) # sqrt(3) -> 1.7321