在三维空间中有两个点
a = (ax, ay, az)
b = (bx, by, bz)
我想计算它们之间的距离:
dist = sqrt((ax-bx)^2 + (ay-by)^2 + (az-bz)^2)
我如何用NumPy做到这一点?我有:
import numpy
a = numpy.array((ax, ay, az))
b = numpy.array((bx, by, bz))
在三维空间中有两个点
a = (ax, ay, az)
b = (bx, by, bz)
我想计算它们之间的距离:
dist = sqrt((ax-bx)^2 + (ay-by)^2 + (az-bz)^2)
我如何用NumPy做到这一点?我有:
import numpy
a = numpy.array((ax, ay, az))
b = numpy.array((bx, by, bz))
当前回答
这里有一些简洁的Python欧几里得距离代码,给出了Python中以列表表示的两个点。
def distance(v1,v2):
return sum([(x-y)**2 for (x,y) in zip(v1,v2)])**(0.5)
其他回答
我在matplotlib中找到了一个“dist”函数。mlab,但我认为它不够方便。
我把它贴在这里只是为了参考。
import numpy as np
import matplotlib as plt
a = np.array([1, 2, 3])
b = np.array([2, 3, 4])
# Distance between a and b
dis = plt.mlab.dist(a, b)
这种解决问题方法的另一个例子:
def dist(x,y):
return numpy.sqrt(numpy.sum((x-y)**2))
a = numpy.array((xa,ya,za))
b = numpy.array((xb,yb,zb))
dist_a_b = dist(a,b)
计算多维空间的欧氏距离:
import math
x = [1, 2, 6]
y = [-2, 3, 2]
dist = math.sqrt(sum([(xi-yi)**2 for xi,yi in zip(x, y)]))
5.0990195135927845
使用Python 3.8,这非常简单。
https://docs.python.org/3/library/math.html#math.dist
math.dist(p, q)
返回给定两点p和q之间的欧氏距离 作为坐标序列(或可迭代对象)。这两点一定有 相同的维度。 大致相当于: √(sum((px - qx) ** 2.0 for px, qx in zip(p, q)))
首先求两个矩阵的差。然后,使用numpy的multiply命令应用元素乘法。然后,求元素与新矩阵相乘的和。最后,求求和的平方根。
def findEuclideanDistance(a, b):
euclidean_distance = a - b
euclidean_distance = np.sum(np.multiply(euclidean_distance, euclidean_distance))
euclidean_distance = np.sqrt(euclidean_distance)
return euclidean_distance