在三维空间中有两个点
a = (ax, ay, az)
b = (bx, by, bz)
我想计算它们之间的距离:
dist = sqrt((ax-bx)^2 + (ay-by)^2 + (az-bz)^2)
我如何用NumPy做到这一点?我有:
import numpy
a = numpy.array((ax, ay, az))
b = numpy.array((bx, by, bz))
在三维空间中有两个点
a = (ax, ay, az)
b = (bx, by, bz)
我想计算它们之间的距离:
dist = sqrt((ax-bx)^2 + (ay-by)^2 + (az-bz)^2)
我如何用NumPy做到这一点?我有:
import numpy
a = numpy.array((ax, ay, az))
b = numpy.array((bx, by, bz))
当前回答
对于大量的距离,我能想到的最快的解决方案是使用numexpr。在我的机器上,它比使用numpy einsum更快:
import numexpr as ne
import numpy as np
np.sqrt(ne.evaluate("sum((a_min_b)**2,axis=1)"))
其他回答
import math
dist = math.hypot(math.hypot(xa-xb, ya-yb), za-zb)
对于大量的距离,我能想到的最快的解决方案是使用numexpr。在我的机器上,它比使用numpy einsum更快:
import numexpr as ne
import numpy as np
np.sqrt(ne.evaluate("sum((a_min_b)**2,axis=1)"))
使用scipy.spatial.distance.euclidean:
from scipy.spatial import distance
a = (1, 2, 3)
b = (4, 5, 6)
dst = distance.euclidean(a, b)
我在matplotlib中找到了一个“dist”函数。mlab,但我认为它不够方便。
我把它贴在这里只是为了参考。
import numpy as np
import matplotlib as plt
a = np.array([1, 2, 3])
b = np.array([2, 3, 4])
# Distance between a and b
dis = plt.mlab.dist(a, b)
使用Python 3.8,这非常简单。
https://docs.python.org/3/library/math.html#math.dist
math.dist(p, q)
返回给定两点p和q之间的欧氏距离 作为坐标序列(或可迭代对象)。这两点一定有 相同的维度。 大致相当于: √(sum((px - qx) ** 2.0 for px, qx in zip(p, q)))