我想创建一个空数组,并将项附加到它,一次一个。
xs = []
for item in data:
xs.append(item)
我可以用NumPy数组使用这种列表风格的符号吗?
我想创建一个空数组,并将项附加到它,一次一个。
xs = []
for item in data:
xs.append(item)
我可以用NumPy数组使用这种列表风格的符号吗?
当前回答
要在NumPy中创建一个空的多维数组(例如,一个2D数组m*n来存储矩阵),如果你不知道你要追加多少行,也不关心Stephen Simmons提到的计算成本(即在每次追加时重新构建数组),你可以将你想追加的维度压缩为0:X = np。空(形状= [0,n])。
这样你可以使用例如(这里m = 5,我们假设我们在创建空矩阵时不知道,n = 2):
import numpy as np
n = 2
X = np.empty(shape=[0, n])
for i in range(5):
for j in range(2):
X = np.append(X, [[i, j]], axis=0)
print X
这将给你:
[[ 0. 0.]
[ 0. 1.]
[ 1. 0.]
[ 1. 1.]
[ 2. 0.]
[ 2. 1.]
[ 3. 0.]
[ 3. 1.]
[ 4. 0.]
[ 4. 1.]]
其他回答
可以使用append函数。行:
>>> from numpy import *
>>> a = array([10,20,30])
>>> append(a, [[1,2,3]], axis=0)
array([[10, 20, 30],
[1, 2, 3]])
列:
>>> append(a, [[15],[15]], axis=1)
array([[10, 20, 30, 15],
[1, 2, 3, 15]])
编辑 当然,正如在其他答案中提到的,除非你在矩阵/数组上做一些处理(例如反转),每次你添加一些东西到它,我只会创建一个列表,添加到它,然后将它转换为数组。
这是有效使用NumPy的错误思维模式。NumPy数组存储在连续的内存块中。要向现有数组追加行或列,需要将整个数组复制到一个新的内存块,为存储的新元素创建间隙。如果重复这样做,效率是非常低的。
与其追加行,不如分配一个适当大小的数组,然后逐行赋值:
>>> import numpy as np
>>> a = np.zeros(shape=(3, 2))
>>> a
array([[ 0., 0.],
[ 0., 0.],
[ 0., 0.]])
>>> a[0] = [1, 2]
>>> a[1] = [3, 4]
>>> a[2] = [5, 6]
>>> a
array([[ 1., 2.],
[ 3., 4.],
[ 5., 6.]])
我研究了很多,因为我需要使用numpy。在我的一个学校项目中,我需要将数组初始化为空…我在Stack Overflow上没有找到任何相关的答案,所以我开始涂鸦。
# Initialize your variable as an empty list first
In [32]: x=[]
# and now cast it as a numpy ndarray
In [33]: x=np.array(x)
结果将是:
In [34]: x
Out[34]: array([], dtype=float64)
因此,可以直接初始化np数组,如下所示:
In [36]: x= np.array([], dtype=np.float64)
我希望这能有所帮助。
你可以应用它来构建任何类型的数组,比如0:
a = range(5)
a = [i*0 for i in a]
print a
[0, 0, 0, 0, 0]
我认为你可以像这样创建空numpy数组:
>>> import numpy as np
>>> empty_array= np.zeros(0)
>>> empty_array
array([], dtype=float64)
>>> empty_array.shape
(0,)
当您想在循环中追加numpy数组时,这种格式非常有用。