我想创建一个空数组,并将项附加到它,一次一个。
xs = []
for item in data:
xs.append(item)
我可以用NumPy数组使用这种列表风格的符号吗?
我想创建一个空数组,并将项附加到它,一次一个。
xs = []
for item in data:
xs.append(item)
我可以用NumPy数组使用这种列表风格的符号吗?
当前回答
为了创建一个空的NumPy数组而不定义它的形状,你可以做以下事情:
arr = np.array([])
首选第一个,因为您知道将使用它作为NumPy数组。NumPy将其转换为np。Ndarray类型之后,没有额外的[]'维度'。
要向数组中添加新元素,我们可以这样做:
arr = np.append(arr, 'new element')
请注意,在python的后台,没有数组这样的东西 定义它的形状。正如@hpaulj提到的那样,这也会产生一个单秩 数组中。
其他回答
另一个创建空数组的简单方法是:
import numpy as np
np.empty((2,3), dtype=object)
也许你正在寻找的是这样的东西:
x=np.array(0)
通过这种方式,您可以创建一个没有任何元素的数组。它类似于:
x=[]
通过这种方式,您可以提前向数组中添加新元素。
根据你使用它的目的,你可能需要指定数据类型(参见'dtype')。
例如,要创建一个8位值的2D数组(适合用作单色图像):
myarray = numpy.empty(shape=(H,W),dtype='u1')
对于RGB图像,包括形状中的颜色通道数:shape=(H,W,3)
您还可以考虑使用numpy进行零初始化。0代替numpy.empty。请看这里的说明。
NumPy数组是一种与列表非常不同的数据结构,被设计成以不同的方式使用。你对hstack的使用可能非常低效…每次调用它时,现有数组中的所有数据都会复制到一个新数组中。(附加函数也会有同样的问题。)如果你想一次一列地构建你的矩阵,你最好将它保存在一个列表中,直到它完成,然后才将它转换成一个数组。
e.g.
mylist = []
for item in data:
mylist.append(item)
mat = numpy.array(mylist)
Item可以是列表、数组或任何可迭代对象 因为每一项都有相同数量的元素。 在这种特殊情况下(data是一个包含矩阵列的可迭代对象),您可以简单地使用
mat = numpy.array(data)
(还要注意,使用list作为变量名可能不是一个好的实践,因为它用该名称掩盖了内置类型,这可能会导致错误。)
编辑:
如果出于某种原因,您确实想要创建一个空数组,您可以使用numpy.array([]),但这很少有用!
下面是一些使numpys看起来更像list的方法
np_arr = np.array([])
np_arr = np.append(np_arr , 2)
np_arr = np.append(np_arr , 24)
print(np_arr)
输出:array([2.], 24。)