我正在解决一个问题,它涉及到快速排序10个数字(int32)。我的应用程序需要以尽可能快的速度对10个数字进行百万次排序。我正在对一个包含数十亿个元素的数据集进行采样,每次我都需要从中挑选10个数字(简化)并对它们进行排序(并从排序的10个元素列表中得出结论)。
目前我正在使用插入排序,但我想我可以为我的10个数字的特定问题实现一个非常快速的自定义排序算法,这将击败插入排序。
我该如何处理这个问题呢?
我正在解决一个问题,它涉及到快速排序10个数字(int32)。我的应用程序需要以尽可能快的速度对10个数字进行百万次排序。我正在对一个包含数十亿个元素的数据集进行采样,每次我都需要从中挑选10个数字(简化)并对它们进行排序(并从排序的10个元素列表中得出结论)。
目前我正在使用插入排序,但我想我可以为我的10个数字的特定问题实现一个非常快速的自定义排序算法,这将击败插入排序。
我该如何处理这个问题呢?
当前回答
您可以完全展开插入排序。
为了简化这一点,可以在没有函数开销的情况下使用递归模板。因为int已经是模板,所以它也可以是模板形参。这也使得编码10以外的数组大小变得很简单。
注意,要排序int x[10],调用insert_sort<int, 9>::sort(x);因为类使用最后一项的索引。这可以被包装,但是需要阅读更多的代码。
template <class T, int NUM>
class insert_sort;
template <class T>
class insert_sort<T,0>
// Stop template recursion
// Sorting one item is a no operation
{
public:
static void place(T *x) {}
static void sort(T * x) {}
};
template <class T, int NUM>
class insert_sort
// Use template recursion to do insertion sort.
// NUM is the index of the last item, e.g. for x[10] call <9>
{
public:
static void place(T *x)
{
T t1=x[NUM-1];
T t2=x[NUM];
if (t1 > t2)
{
x[NUM-1]=t2;
x[NUM]=t1;
insert_sort<T,NUM-1>::place(x);
}
}
static void sort(T * x)
{
insert_sort<T,NUM-1>::sort(x); // Sort everything before
place(x); // Put this item in
}
};
在我的测试中,这比排序网络的例子要快。
其他回答
尽管网络排序在小数组上有很好的快速几率,但如果适当优化,有时您无法击败插入排序。例如,有2个元素的批量插入:
{
final int a=in[0]<in[1]?in[0]:in[1];
final int b=in[0]<in[1]?in[1]:in[0];
in[0]=a;
in[1]=b;
}
for(int x=2;x<10;x+=2)
{
final int a=in[x]<in[x+1]?in[x]:in[x+1];
final int b=in[x]<in[x+1]?in[x+1]:in[x];
int y= x-1;
while(y>=0&&in[y]>b)
{
in[y+2]= in[y];
--y;
}
in[y+2]=b;
while(y>=0&&in[y]>a)
{
in[y+1]= in[y];
--y;
}
in[y+1]=a;
}
当您处理这个固定大小时,请查看排序网络。这些算法有固定的运行时间,并且独立于它们的输入。对于您的用例,您没有某些排序算法所具有的这种开销。
二进制排序就是这种网络的一种实现。这个方法在CPU上使用len(n) <= 32时效果最好。对于更大的输入,你可以考虑使用GPU。
顺便说一下,比较排序算法的一个好页面是这个(尽管它缺少二进制排序):
排序算法动画
插入排序平均需要29,6次与排序10个输入的比较,最佳情况为9,最差情况为45(给定输入的顺序是相反的)。
{9,6,1} shellsort平均需要25.5次比较来排序10个输入。最好的情况是14次比较,最坏的情况是34次,对反向输入排序需要22次。
因此,使用shellsort而不是插入排序可以减少14%的平均情况。尽管最佳情况增加了56%,但最坏情况减少了24%,这对于控制最坏情况性能非常重要的应用程序来说意义重大。反之则减少51%。
因为你似乎对插入排序很熟悉,你可以将算法实现为{9,6}的排序网络,然后在那之后附加插入排序({1}):
i[0] with i[9] // {9}
i[0] with i[6] // {6}
i[1] with i[7] // {6}
i[2] with i[8] // {6}
i[3] with i[9] // {6}
i[0 ... 9] // insertion sort
(根据@HelloWorld的建议,研究排序网络。)
似乎29个比较/交换网络是进行10个输入排序的最快方法。在这个例子中,我使用了Waksman在1969年发现的JavaScript网络,它应该直接转换成C语言,因为它只是一个if语句、比较和交换的列表。
function sortNet10(data) { // ten-input sorting network by Waksman, 1969 var swap; if (data[0] > data[5]) { swap = data[0]; data[0] = data[5]; data[5] = swap; } if (data[1] > data[6]) { swap = data[1]; data[1] = data[6]; data[6] = swap; } if (data[2] > data[7]) { swap = data[2]; data[2] = data[7]; data[7] = swap; } if (data[3] > data[8]) { swap = data[3]; data[3] = data[8]; data[8] = swap; } if (data[4] > data[9]) { swap = data[4]; data[4] = data[9]; data[9] = swap; } if (data[0] > data[3]) { swap = data[0]; data[0] = data[3]; data[3] = swap; } if (data[5] > data[8]) { swap = data[5]; data[5] = data[8]; data[8] = swap; } if (data[1] > data[4]) { swap = data[1]; data[1] = data[4]; data[4] = swap; } if (data[6] > data[9]) { swap = data[6]; data[6] = data[9]; data[9] = swap; } if (data[0] > data[2]) { swap = data[0]; data[0] = data[2]; data[2] = swap; } if (data[3] > data[6]) { swap = data[3]; data[3] = data[6]; data[6] = swap; } if (data[7] > data[9]) { swap = data[7]; data[7] = data[9]; data[9] = swap; } if (data[0] > data[1]) { swap = data[0]; data[0] = data[1]; data[1] = swap; } if (data[2] > data[4]) { swap = data[2]; data[2] = data[4]; data[4] = swap; } if (data[5] > data[7]) { swap = data[5]; data[5] = data[7]; data[7] = swap; } if (data[8] > data[9]) { swap = data[8]; data[8] = data[9]; data[9] = swap; } if (data[1] > data[2]) { swap = data[1]; data[1] = data[2]; data[2] = swap; } if (data[3] > data[5]) { swap = data[3]; data[3] = data[5]; data[5] = swap; } if (data[4] > data[6]) { swap = data[4]; data[4] = data[6]; data[6] = swap; } if (data[7] > data[8]) { swap = data[7]; data[7] = data[8]; data[8] = swap; } if (data[1] > data[3]) { swap = data[1]; data[1] = data[3]; data[3] = swap; } if (data[4] > data[7]) { swap = data[4]; data[4] = data[7]; data[7] = swap; } if (data[2] > data[5]) { swap = data[2]; data[2] = data[5]; data[5] = swap; } if (data[6] > data[8]) { swap = data[6]; data[6] = data[8]; data[8] = swap; } if (data[2] > data[3]) { swap = data[2]; data[2] = data[3]; data[3] = swap; } if (data[4] > data[5]) { swap = data[4]; data[4] = data[5]; data[5] = swap; } if (data[6] > data[7]) { swap = data[6]; data[6] = data[7]; data[7] = swap; } if (data[3] > data[4]) { swap = data[3]; data[3] = data[4]; data[4] = swap; } if (data[5] > data[6]) { swap = data[5]; data[5] = data[6]; data[6] = swap; } return(data); } document.write(sortNet10([5,7,1,8,4,3,6,9,2,0]));
这里是网络的图形表示,分为独立的阶段。
为了利用并行处理的优势,可以将5-4-3-3 - 4-4-2 -3-2分组改为4-4-4-2 -4-4-3-2分组。
出于类似于我在这里描述的原因,以下排序函数sort6_iterator()和sort10_iterator_local()应该能很好地执行,其中排序网络是从这里取的:
template<class IterType>
inline void sort10_iterator(IterType it)
{
#define SORT2(x,y) {if(data##x>data##y)std::swap(data##x,data##y);}
#define DD1(a) auto data##a=*(data+a);
#define DD2(a,b) auto data##a=*(data+a), data##b=*(data+b);
#define CB1(a) *(data+a)=data##a;
#define CB2(a,b) *(data+a)=data##a;*(data+b)=data##b;
DD2(1,4) SORT2(1,4) DD2(7,8) SORT2(7,8) DD2(2,3) SORT2(2,3) DD2(5,6) SORT2(5,6) DD2(0,9) SORT2(0,9)
SORT2(2,5) SORT2(0,7) SORT2(8,9) SORT2(3,6)
SORT2(4,9) SORT2(0,1)
SORT2(0,2) CB1(0) SORT2(6,9) CB1(9) SORT2(3,5) SORT2(4,7) SORT2(1,8)
SORT2(3,4) SORT2(5,8) SORT2(6,7) SORT2(1,2)
SORT2(7,8) CB1(8) SORT2(1,3) CB1(1) SORT2(2,5) SORT2(4,6)
SORT2(2,3) CB1(2) SORT2(6,7) CB1(7) SORT2(4,5)
SORT2(3,4) CB2(3,4) SORT2(5,6) CB2(5,6)
#undef CB1
#undef CB2
#undef DD1
#undef DD2
#undef SORT2
}
为了调用这个函数,我给它传递了一个std::vector迭代器。