我正在解决一个问题,它涉及到快速排序10个数字(int32)。我的应用程序需要以尽可能快的速度对10个数字进行百万次排序。我正在对一个包含数十亿个元素的数据集进行采样,每次我都需要从中挑选10个数字(简化)并对它们进行排序(并从排序的10个元素列表中得出结论)。
目前我正在使用插入排序,但我想我可以为我的10个数字的特定问题实现一个非常快速的自定义排序算法,这将击败插入排序。
我该如何处理这个问题呢?
我正在解决一个问题,它涉及到快速排序10个数字(int32)。我的应用程序需要以尽可能快的速度对10个数字进行百万次排序。我正在对一个包含数十亿个元素的数据集进行采样,每次我都需要从中挑选10个数字(简化)并对它们进行排序(并从排序的10个元素列表中得出结论)。
目前我正在使用插入排序,但我想我可以为我的10个数字的特定问题实现一个非常快速的自定义排序算法,这将击败插入排序。
我该如何处理这个问题呢?
当前回答
(根据@HelloWorld的建议,研究排序网络。)
似乎29个比较/交换网络是进行10个输入排序的最快方法。在这个例子中,我使用了Waksman在1969年发现的JavaScript网络,它应该直接转换成C语言,因为它只是一个if语句、比较和交换的列表。
function sortNet10(data) { // ten-input sorting network by Waksman, 1969 var swap; if (data[0] > data[5]) { swap = data[0]; data[0] = data[5]; data[5] = swap; } if (data[1] > data[6]) { swap = data[1]; data[1] = data[6]; data[6] = swap; } if (data[2] > data[7]) { swap = data[2]; data[2] = data[7]; data[7] = swap; } if (data[3] > data[8]) { swap = data[3]; data[3] = data[8]; data[8] = swap; } if (data[4] > data[9]) { swap = data[4]; data[4] = data[9]; data[9] = swap; } if (data[0] > data[3]) { swap = data[0]; data[0] = data[3]; data[3] = swap; } if (data[5] > data[8]) { swap = data[5]; data[5] = data[8]; data[8] = swap; } if (data[1] > data[4]) { swap = data[1]; data[1] = data[4]; data[4] = swap; } if (data[6] > data[9]) { swap = data[6]; data[6] = data[9]; data[9] = swap; } if (data[0] > data[2]) { swap = data[0]; data[0] = data[2]; data[2] = swap; } if (data[3] > data[6]) { swap = data[3]; data[3] = data[6]; data[6] = swap; } if (data[7] > data[9]) { swap = data[7]; data[7] = data[9]; data[9] = swap; } if (data[0] > data[1]) { swap = data[0]; data[0] = data[1]; data[1] = swap; } if (data[2] > data[4]) { swap = data[2]; data[2] = data[4]; data[4] = swap; } if (data[5] > data[7]) { swap = data[5]; data[5] = data[7]; data[7] = swap; } if (data[8] > data[9]) { swap = data[8]; data[8] = data[9]; data[9] = swap; } if (data[1] > data[2]) { swap = data[1]; data[1] = data[2]; data[2] = swap; } if (data[3] > data[5]) { swap = data[3]; data[3] = data[5]; data[5] = swap; } if (data[4] > data[6]) { swap = data[4]; data[4] = data[6]; data[6] = swap; } if (data[7] > data[8]) { swap = data[7]; data[7] = data[8]; data[8] = swap; } if (data[1] > data[3]) { swap = data[1]; data[1] = data[3]; data[3] = swap; } if (data[4] > data[7]) { swap = data[4]; data[4] = data[7]; data[7] = swap; } if (data[2] > data[5]) { swap = data[2]; data[2] = data[5]; data[5] = swap; } if (data[6] > data[8]) { swap = data[6]; data[6] = data[8]; data[8] = swap; } if (data[2] > data[3]) { swap = data[2]; data[2] = data[3]; data[3] = swap; } if (data[4] > data[5]) { swap = data[4]; data[4] = data[5]; data[5] = swap; } if (data[6] > data[7]) { swap = data[6]; data[6] = data[7]; data[7] = swap; } if (data[3] > data[4]) { swap = data[3]; data[3] = data[4]; data[4] = swap; } if (data[5] > data[6]) { swap = data[5]; data[5] = data[6]; data[6] = swap; } return(data); } document.write(sortNet10([5,7,1,8,4,3,6,9,2,0]));
这里是网络的图形表示,分为独立的阶段。
为了利用并行处理的优势,可以将5-4-3-3 - 4-4-2 -3-2分组改为4-4-4-2 -4-4-3-2分组。
其他回答
出于类似于我在这里描述的原因,以下排序函数sort6_iterator()和sort10_iterator_local()应该能很好地执行,其中排序网络是从这里取的:
template<class IterType>
inline void sort10_iterator(IterType it)
{
#define SORT2(x,y) {if(data##x>data##y)std::swap(data##x,data##y);}
#define DD1(a) auto data##a=*(data+a);
#define DD2(a,b) auto data##a=*(data+a), data##b=*(data+b);
#define CB1(a) *(data+a)=data##a;
#define CB2(a,b) *(data+a)=data##a;*(data+b)=data##b;
DD2(1,4) SORT2(1,4) DD2(7,8) SORT2(7,8) DD2(2,3) SORT2(2,3) DD2(5,6) SORT2(5,6) DD2(0,9) SORT2(0,9)
SORT2(2,5) SORT2(0,7) SORT2(8,9) SORT2(3,6)
SORT2(4,9) SORT2(0,1)
SORT2(0,2) CB1(0) SORT2(6,9) CB1(9) SORT2(3,5) SORT2(4,7) SORT2(1,8)
SORT2(3,4) SORT2(5,8) SORT2(6,7) SORT2(1,2)
SORT2(7,8) CB1(8) SORT2(1,3) CB1(1) SORT2(2,5) SORT2(4,6)
SORT2(2,3) CB1(2) SORT2(6,7) CB1(7) SORT2(4,5)
SORT2(3,4) CB2(3,4) SORT2(5,6) CB2(5,6)
#undef CB1
#undef CB2
#undef DD1
#undef DD2
#undef SORT2
}
为了调用这个函数,我给它传递了一个std::vector迭代器。
使用排序网络,以4为一组进行比较,这样就可以在SIMD寄存器中进行比较。一对打包的最小/最大指令实现了打包比较器函数。对不起,我现在没有时间去找我记得看到过的关于这个的页面,但希望在SIMD或SSE排序网络上搜索会找到一些东西。
x86 SSE确实为4个32位整型的向量提供了打包的32位整型的min和max指令。AVX2 (Haswell及后续版本)具有相同的功能,但用于256b的8个整型向量。还有高效的洗牌指令。
如果你有很多独立的小排序,用向量并行地做4到8个排序是可能的。特别是,如果你随机选择元素(所以要排序的数据在内存中不会连续),你可以避免打乱,只需要按照你需要的顺序进行比较。10个寄存器保存来自4个(AVX2: 8) 10个整数列表的所有数据,仍然留下6个reg作为临时空间。
如果还需要对相关数据进行排序,则向量排序网络的效率较低。在这种情况下,最有效的方法似乎是使用wrapped -compare来获得更改元素的掩码,并使用该掩码来混合相关数据的(引用)向量。
(根据@HelloWorld的建议,研究排序网络。)
似乎29个比较/交换网络是进行10个输入排序的最快方法。在这个例子中,我使用了Waksman在1969年发现的JavaScript网络,它应该直接转换成C语言,因为它只是一个if语句、比较和交换的列表。
function sortNet10(data) { // ten-input sorting network by Waksman, 1969 var swap; if (data[0] > data[5]) { swap = data[0]; data[0] = data[5]; data[5] = swap; } if (data[1] > data[6]) { swap = data[1]; data[1] = data[6]; data[6] = swap; } if (data[2] > data[7]) { swap = data[2]; data[2] = data[7]; data[7] = swap; } if (data[3] > data[8]) { swap = data[3]; data[3] = data[8]; data[8] = swap; } if (data[4] > data[9]) { swap = data[4]; data[4] = data[9]; data[9] = swap; } if (data[0] > data[3]) { swap = data[0]; data[0] = data[3]; data[3] = swap; } if (data[5] > data[8]) { swap = data[5]; data[5] = data[8]; data[8] = swap; } if (data[1] > data[4]) { swap = data[1]; data[1] = data[4]; data[4] = swap; } if (data[6] > data[9]) { swap = data[6]; data[6] = data[9]; data[9] = swap; } if (data[0] > data[2]) { swap = data[0]; data[0] = data[2]; data[2] = swap; } if (data[3] > data[6]) { swap = data[3]; data[3] = data[6]; data[6] = swap; } if (data[7] > data[9]) { swap = data[7]; data[7] = data[9]; data[9] = swap; } if (data[0] > data[1]) { swap = data[0]; data[0] = data[1]; data[1] = swap; } if (data[2] > data[4]) { swap = data[2]; data[2] = data[4]; data[4] = swap; } if (data[5] > data[7]) { swap = data[5]; data[5] = data[7]; data[7] = swap; } if (data[8] > data[9]) { swap = data[8]; data[8] = data[9]; data[9] = swap; } if (data[1] > data[2]) { swap = data[1]; data[1] = data[2]; data[2] = swap; } if (data[3] > data[5]) { swap = data[3]; data[3] = data[5]; data[5] = swap; } if (data[4] > data[6]) { swap = data[4]; data[4] = data[6]; data[6] = swap; } if (data[7] > data[8]) { swap = data[7]; data[7] = data[8]; data[8] = swap; } if (data[1] > data[3]) { swap = data[1]; data[1] = data[3]; data[3] = swap; } if (data[4] > data[7]) { swap = data[4]; data[4] = data[7]; data[7] = swap; } if (data[2] > data[5]) { swap = data[2]; data[2] = data[5]; data[5] = swap; } if (data[6] > data[8]) { swap = data[6]; data[6] = data[8]; data[8] = swap; } if (data[2] > data[3]) { swap = data[2]; data[2] = data[3]; data[3] = swap; } if (data[4] > data[5]) { swap = data[4]; data[4] = data[5]; data[5] = swap; } if (data[6] > data[7]) { swap = data[6]; data[6] = data[7]; data[7] = swap; } if (data[3] > data[4]) { swap = data[3]; data[3] = data[4]; data[4] = swap; } if (data[5] > data[6]) { swap = data[5]; data[5] = data[6]; data[6] = swap; } return(data); } document.write(sortNet10([5,7,1,8,4,3,6,9,2,0]));
这里是网络的图形表示,分为独立的阶段。
为了利用并行处理的优势,可以将5-4-3-3 - 4-4-2 -3-2分组改为4-4-4-2 -4-4-3-2分组。
插入排序平均需要29,6次与排序10个输入的比较,最佳情况为9,最差情况为45(给定输入的顺序是相反的)。
{9,6,1} shellsort平均需要25.5次比较来排序10个输入。最好的情况是14次比较,最坏的情况是34次,对反向输入排序需要22次。
因此,使用shellsort而不是插入排序可以减少14%的平均情况。尽管最佳情况增加了56%,但最坏情况减少了24%,这对于控制最坏情况性能非常重要的应用程序来说意义重大。反之则减少51%。
因为你似乎对插入排序很熟悉,你可以将算法实现为{9,6}的排序网络,然后在那之后附加插入排序({1}):
i[0] with i[9] // {9}
i[0] with i[6] // {6}
i[1] with i[7] // {6}
i[2] with i[8] // {6}
i[3] with i[9] // {6}
i[0 ... 9] // insertion sort
那么展开的、无分支的选择排序呢?
#include <iostream>
#include <algorithm>
#include <random>
//return the index of the minimum element in array a
int min(const int * const a) {
int m = a[0];
int indx = 0;
#define TEST(i) (m > a[i]) && (m = a[i], indx = i );
//see http://stackoverflow.com/a/7074042/2140449
TEST(1);
TEST(2);
TEST(3);
TEST(4);
TEST(5);
TEST(6);
TEST(7);
TEST(8);
TEST(9);
#undef TEST
return indx;
}
void sort( int * const a ){
int work[10];
int indx;
#define GET(i) indx = min(a); work[i] = a[indx]; a[indx] = 2147483647;
//get the minimum, copy it to work and set it at max_int in a
GET(0);
GET(1);
GET(2);
GET(3);
GET(4);
GET(5);
GET(6);
GET(7);
GET(8);
GET(9);
#undef GET
#define COPY(i) a[i] = work[i];
//copy back to a
COPY(0);
COPY(1);
COPY(2);
COPY(3);
COPY(4);
COPY(5);
COPY(6);
COPY(7);
COPY(8);
COPY(9);
#undef COPY
}
int main() {
//generating and printing a random array
int a[10] = { 1,2,3,4,5,6,7,8,9,10 };
std::random_device rd;
std::mt19937 g(rd());
std::shuffle( a, a+10, g);
for (int i = 0; i < 10; i++) {
std::cout << a[i] << ' ';
}
std::cout << std::endl;
//sorting and printing again
sort(a);
for (int i = 0; i < 10; i++) {
std::cout << a[i] << ' ';
}
return 0;
}
http://coliru.stacked-crooked.com/a/71e18bc4f7fa18c6
唯一相关的行是前两行#define。
它使用两个列表,并将第一个列表重新检查十次,这将是一个糟糕的选择排序,但它避免了分支和变长循环,这可能会补偿现代处理器和如此小的数据集。
基准
我对排序网络进行了基准测试,我的代码似乎变慢了。然而,我试图删除展开和复制。运行以下代码:
#include <iostream>
#include <algorithm>
#include <random>
#include <chrono>
int min(const int * const a, int i) {
int m = a[i];
int indx = i++;
for ( ; i<10; i++)
//see http://stackoverflow.com/a/7074042/2140449
(m > a[i]) && (m = a[i], indx = i );
return indx;
}
void sort( int * const a ){
for (int i = 0; i<9; i++)
std::swap(a[i], a[min(a,i)]); //search only forward
}
void sortNet10(int * const data) { // ten-input sorting network by Waksman, 1969
int swap;
if (data[0] > data[5]) { swap = data[0]; data[0] = data[5]; data[5] = swap; }
if (data[1] > data[6]) { swap = data[1]; data[1] = data[6]; data[6] = swap; }
if (data[2] > data[7]) { swap = data[2]; data[2] = data[7]; data[7] = swap; }
if (data[3] > data[8]) { swap = data[3]; data[3] = data[8]; data[8] = swap; }
if (data[4] > data[9]) { swap = data[4]; data[4] = data[9]; data[9] = swap; }
if (data[0] > data[3]) { swap = data[0]; data[0] = data[3]; data[3] = swap; }
if (data[5] > data[8]) { swap = data[5]; data[5] = data[8]; data[8] = swap; }
if (data[1] > data[4]) { swap = data[1]; data[1] = data[4]; data[4] = swap; }
if (data[6] > data[9]) { swap = data[6]; data[6] = data[9]; data[9] = swap; }
if (data[0] > data[2]) { swap = data[0]; data[0] = data[2]; data[2] = swap; }
if (data[3] > data[6]) { swap = data[3]; data[3] = data[6]; data[6] = swap; }
if (data[7] > data[9]) { swap = data[7]; data[7] = data[9]; data[9] = swap; }
if (data[0] > data[1]) { swap = data[0]; data[0] = data[1]; data[1] = swap; }
if (data[2] > data[4]) { swap = data[2]; data[2] = data[4]; data[4] = swap; }
if (data[5] > data[7]) { swap = data[5]; data[5] = data[7]; data[7] = swap; }
if (data[8] > data[9]) { swap = data[8]; data[8] = data[9]; data[9] = swap; }
if (data[1] > data[2]) { swap = data[1]; data[1] = data[2]; data[2] = swap; }
if (data[3] > data[5]) { swap = data[3]; data[3] = data[5]; data[5] = swap; }
if (data[4] > data[6]) { swap = data[4]; data[4] = data[6]; data[6] = swap; }
if (data[7] > data[8]) { swap = data[7]; data[7] = data[8]; data[8] = swap; }
if (data[1] > data[3]) { swap = data[1]; data[1] = data[3]; data[3] = swap; }
if (data[4] > data[7]) { swap = data[4]; data[4] = data[7]; data[7] = swap; }
if (data[2] > data[5]) { swap = data[2]; data[2] = data[5]; data[5] = swap; }
if (data[6] > data[8]) { swap = data[6]; data[6] = data[8]; data[8] = swap; }
if (data[2] > data[3]) { swap = data[2]; data[2] = data[3]; data[3] = swap; }
if (data[4] > data[5]) { swap = data[4]; data[4] = data[5]; data[5] = swap; }
if (data[6] > data[7]) { swap = data[6]; data[6] = data[7]; data[7] = swap; }
if (data[3] > data[4]) { swap = data[3]; data[3] = data[4]; data[4] = swap; }
if (data[5] > data[6]) { swap = data[5]; data[5] = data[6]; data[6] = swap; }
}
std::chrono::duration<double> benchmark( void(*func)(int * const), const int seed ) {
std::mt19937 g(seed);
int a[10] = {10,11,12,13,14,15,16,17,18,19};
std::chrono::high_resolution_clock::time_point t1, t2;
t1 = std::chrono::high_resolution_clock::now();
for (long i = 0; i < 1e7; i++) {
std::shuffle( a, a+10, g);
func(a);
}
t2 = std::chrono::high_resolution_clock::now();
return std::chrono::duration_cast<std::chrono::duration<double>>(t2 - t1);
}
int main() {
std::random_device rd;
for (int i = 0; i < 10; i++) {
const int seed = rd();
std::cout << "seed = " << seed << std::endl;
std::cout << "sortNet10: " << benchmark(sortNet10, seed).count() << std::endl;
std::cout << "sort: " << benchmark(sort, seed).count() << std::endl;
}
return 0;
}
与排序网络相比,我一直在为无分支选择排序获得更好的结果。
$ gcc -v
gcc version 5.2.0 (GCC)
$ g++ -std=c++11 -Ofast sort.cpp && ./a.out
seed = -1727396418
sortNet10: 2.24137
sort: 2.21828
seed = 2003959850
sortNet10: 2.23914
sort: 2.21641
seed = 1994540383
sortNet10: 2.23782
sort: 2.21778
seed = 1258259982
sortNet10: 2.25199
sort: 2.21801
seed = 1821086932
sortNet10: 2.25535
sort: 2.2173
seed = 412262735
sortNet10: 2.24489
sort: 2.21776
seed = 1059795817
sortNet10: 2.29226
sort: 2.21777
seed = -188551272
sortNet10: 2.23803
sort: 2.22996
seed = 1043757247
sortNet10: 2.2503
sort: 2.23604
seed = -268332483
sortNet10: 2.24455
sort: 2.24304