我正在解决一个问题,它涉及到快速排序10个数字(int32)。我的应用程序需要以尽可能快的速度对10个数字进行百万次排序。我正在对一个包含数十亿个元素的数据集进行采样,每次我都需要从中挑选10个数字(简化)并对它们进行排序(并从排序的10个元素列表中得出结论)。
目前我正在使用插入排序,但我想我可以为我的10个数字的特定问题实现一个非常快速的自定义排序算法,这将击败插入排序。
我该如何处理这个问题呢?
我正在解决一个问题,它涉及到快速排序10个数字(int32)。我的应用程序需要以尽可能快的速度对10个数字进行百万次排序。我正在对一个包含数十亿个元素的数据集进行采样,每次我都需要从中挑选10个数字(简化)并对它们进行排序(并从排序的10个元素列表中得出结论)。
目前我正在使用插入排序,但我想我可以为我的10个数字的特定问题实现一个非常快速的自定义排序算法,这将击败插入排序。
我该如何处理这个问题呢?
当前回答
(根据@HelloWorld的建议,研究排序网络。)
似乎29个比较/交换网络是进行10个输入排序的最快方法。在这个例子中,我使用了Waksman在1969年发现的JavaScript网络,它应该直接转换成C语言,因为它只是一个if语句、比较和交换的列表。
function sortNet10(data) { // ten-input sorting network by Waksman, 1969 var swap; if (data[0] > data[5]) { swap = data[0]; data[0] = data[5]; data[5] = swap; } if (data[1] > data[6]) { swap = data[1]; data[1] = data[6]; data[6] = swap; } if (data[2] > data[7]) { swap = data[2]; data[2] = data[7]; data[7] = swap; } if (data[3] > data[8]) { swap = data[3]; data[3] = data[8]; data[8] = swap; } if (data[4] > data[9]) { swap = data[4]; data[4] = data[9]; data[9] = swap; } if (data[0] > data[3]) { swap = data[0]; data[0] = data[3]; data[3] = swap; } if (data[5] > data[8]) { swap = data[5]; data[5] = data[8]; data[8] = swap; } if (data[1] > data[4]) { swap = data[1]; data[1] = data[4]; data[4] = swap; } if (data[6] > data[9]) { swap = data[6]; data[6] = data[9]; data[9] = swap; } if (data[0] > data[2]) { swap = data[0]; data[0] = data[2]; data[2] = swap; } if (data[3] > data[6]) { swap = data[3]; data[3] = data[6]; data[6] = swap; } if (data[7] > data[9]) { swap = data[7]; data[7] = data[9]; data[9] = swap; } if (data[0] > data[1]) { swap = data[0]; data[0] = data[1]; data[1] = swap; } if (data[2] > data[4]) { swap = data[2]; data[2] = data[4]; data[4] = swap; } if (data[5] > data[7]) { swap = data[5]; data[5] = data[7]; data[7] = swap; } if (data[8] > data[9]) { swap = data[8]; data[8] = data[9]; data[9] = swap; } if (data[1] > data[2]) { swap = data[1]; data[1] = data[2]; data[2] = swap; } if (data[3] > data[5]) { swap = data[3]; data[3] = data[5]; data[5] = swap; } if (data[4] > data[6]) { swap = data[4]; data[4] = data[6]; data[6] = swap; } if (data[7] > data[8]) { swap = data[7]; data[7] = data[8]; data[8] = swap; } if (data[1] > data[3]) { swap = data[1]; data[1] = data[3]; data[3] = swap; } if (data[4] > data[7]) { swap = data[4]; data[4] = data[7]; data[7] = swap; } if (data[2] > data[5]) { swap = data[2]; data[2] = data[5]; data[5] = swap; } if (data[6] > data[8]) { swap = data[6]; data[6] = data[8]; data[8] = swap; } if (data[2] > data[3]) { swap = data[2]; data[2] = data[3]; data[3] = swap; } if (data[4] > data[5]) { swap = data[4]; data[4] = data[5]; data[5] = swap; } if (data[6] > data[7]) { swap = data[6]; data[6] = data[7]; data[7] = swap; } if (data[3] > data[4]) { swap = data[3]; data[3] = data[4]; data[4] = swap; } if (data[5] > data[6]) { swap = data[5]; data[5] = data[6]; data[6] = swap; } return(data); } document.write(sortNet10([5,7,1,8,4,3,6,9,2,0]));
这里是网络的图形表示,分为独立的阶段。
为了利用并行处理的优势,可以将5-4-3-3 - 4-4-2 -3-2分组改为4-4-4-2 -4-4-3-2分组。
其他回答
当您处理这个固定大小时,请查看排序网络。这些算法有固定的运行时间,并且独立于它们的输入。对于您的用例,您没有某些排序算法所具有的这种开销。
二进制排序就是这种网络的一种实现。这个方法在CPU上使用len(n) <= 32时效果最好。对于更大的输入,你可以考虑使用GPU。
顺便说一下,比较排序算法的一个好页面是这个(尽管它缺少二进制排序):
排序算法动画
插入排序平均需要29,6次与排序10个输入的比较,最佳情况为9,最差情况为45(给定输入的顺序是相反的)。
{9,6,1} shellsort平均需要25.5次比较来排序10个输入。最好的情况是14次比较,最坏的情况是34次,对反向输入排序需要22次。
因此,使用shellsort而不是插入排序可以减少14%的平均情况。尽管最佳情况增加了56%,但最坏情况减少了24%,这对于控制最坏情况性能非常重要的应用程序来说意义重大。反之则减少51%。
因为你似乎对插入排序很熟悉,你可以将算法实现为{9,6}的排序网络,然后在那之后附加插入排序({1}):
i[0] with i[9] // {9}
i[0] with i[6] // {6}
i[1] with i[7] // {6}
i[2] with i[8] // {6}
i[3] with i[9] // {6}
i[0 ... 9] // insertion sort
我最近写了一个小类,它使用Bose-Nelson算法在编译时生成排序网络。
它可以用来为10个数字创建一个非常快速的排序。
/**
* A Functor class to create a sort for fixed sized arrays/containers with a
* compile time generated Bose-Nelson sorting network.
* \tparam NumElements The number of elements in the array or container to sort.
* \tparam T The element type.
* \tparam Compare A comparator functor class that returns true if lhs < rhs.
*/
template <unsigned NumElements, class Compare = void> class StaticSort
{
template <class A, class C> struct Swap
{
template <class T> inline void s(T &v0, T &v1)
{
T t = Compare()(v0, v1) ? v0 : v1; // Min
v1 = Compare()(v0, v1) ? v1 : v0; // Max
v0 = t;
}
inline Swap(A &a, const int &i0, const int &i1) { s(a[i0], a[i1]); }
};
template <class A> struct Swap <A, void>
{
template <class T> inline void s(T &v0, T &v1)
{
// Explicitly code out the Min and Max to nudge the compiler
// to generate branchless code.
T t = v0 < v1 ? v0 : v1; // Min
v1 = v0 < v1 ? v1 : v0; // Max
v0 = t;
}
inline Swap(A &a, const int &i0, const int &i1) { s(a[i0], a[i1]); }
};
template <class A, class C, int I, int J, int X, int Y> struct PB
{
inline PB(A &a)
{
enum { L = X >> 1, M = (X & 1 ? Y : Y + 1) >> 1, IAddL = I + L, XSubL = X - L };
PB<A, C, I, J, L, M> p0(a);
PB<A, C, IAddL, J + M, XSubL, Y - M> p1(a);
PB<A, C, IAddL, J, XSubL, M> p2(a);
}
};
template <class A, class C, int I, int J> struct PB <A, C, I, J, 1, 1>
{
inline PB(A &a) { Swap<A, C> s(a, I - 1, J - 1); }
};
template <class A, class C, int I, int J> struct PB <A, C, I, J, 1, 2>
{
inline PB(A &a) { Swap<A, C> s0(a, I - 1, J); Swap<A, C> s1(a, I - 1, J - 1); }
};
template <class A, class C, int I, int J> struct PB <A, C, I, J, 2, 1>
{
inline PB(A &a) { Swap<A, C> s0(a, I - 1, J - 1); Swap<A, C> s1(a, I, J - 1); }
};
template <class A, class C, int I, int M, bool Stop = false> struct PS
{
inline PS(A &a)
{
enum { L = M >> 1, IAddL = I + L, MSubL = M - L};
PS<A, C, I, L, (L <= 1)> ps0(a);
PS<A, C, IAddL, MSubL, (MSubL <= 1)> ps1(a);
PB<A, C, I, IAddL, L, MSubL> pb(a);
}
};
template <class A, class C, int I, int M> struct PS <A, C, I, M, true>
{
inline PS(A &a) {}
};
public:
/**
* Sorts the array/container arr.
* \param arr The array/container to be sorted.
*/
template <class Container> inline void operator() (Container &arr) const
{
PS<Container, Compare, 1, NumElements, (NumElements <= 1)> ps(arr);
};
/**
* Sorts the array arr.
* \param arr The array to be sorted.
*/
template <class T> inline void operator() (T *arr) const
{
PS<T*, Compare, 1, NumElements, (NumElements <= 1)> ps(arr);
};
};
#include <iostream>
#include <vector>
int main(int argc, const char * argv[])
{
enum { NumValues = 10 };
// Arrays
{
int rands[NumValues];
for (int i = 0; i < NumValues; ++i) rands[i] = rand() % 100;
std::cout << "Before Sort: \t";
for (int i = 0; i < NumValues; ++i) std::cout << rands[i] << " ";
std::cout << "\n";
StaticSort<NumValues> staticSort;
staticSort(rands);
std::cout << "After Sort: \t";
for (int i = 0; i < NumValues; ++i) std::cout << rands[i] << " ";
std::cout << "\n";
}
std::cout << "\n";
// STL Vector
{
std::vector<int> rands(NumValues);
for (int i = 0; i < NumValues; ++i) rands[i] = rand() % 100;
std::cout << "Before Sort: \t";
for (int i = 0; i < NumValues; ++i) std::cout << rands[i] << " ";
std::cout << "\n";
StaticSort<NumValues> staticSort;
staticSort(rands);
std::cout << "After Sort: \t";
for (int i = 0; i < NumValues; ++i) std::cout << rands[i] << " ";
std::cout << "\n";
}
return 0;
}
注意,我们没有使用if (compare)交换语句,而是显式地为min和max编写了三元运算符。这有助于推动编译器使用无分支代码。
# #基准
下面的基准测试是用clang -O3编译的,并在我2012年年中的MacBook Air上运行。
###排序随机数据
将它与DarioP的代码进行比较,下面是排序100万个大小为10的32位整型数组所需的毫秒数:
硬编码排序网络10:88.774毫秒 模板化玻色-纳尔逊排序10:27.815毫秒
使用这种模板化方法,我们还可以在编译时为其他数量的元素生成排序网络。
排序100万个不同大小的数组的时间(以毫秒为单位)。
大小为2、4、8的数组的毫秒数分别为1.943、8.655、20.246。
感谢格伦·泰特鲍姆的展开插入排序。
下面是6个元素的小数组每次排序的平均时钟。基准测试代码和示例可以在以下问题中找到:
最快的固定长度6 int数组排序
Direct call to qsort library function : 326.81
Naive implementation (insertion sort) : 132.98
Insertion Sort (Daniel Stutzbach) : 104.04
Insertion Sort Unrolled : 99.64
Insertion Sort Unrolled (Glenn Teitelbaum) : 81.55
Rank Order : 44.01
Rank Order with registers : 42.40
Sorting Networks (Daniel Stutzbach) : 88.06
Sorting Networks (Paul R) : 31.64
Sorting Networks 12 with Fast Swap : 29.68
Sorting Networks 12 reordered Swap : 28.61
Reordered Sorting Network w/ fast swap : 24.63
Templated Sorting Network (this class) : 25.37
对于6个元素,它的执行速度和问题中最快的例子一样快。
###排序数据的性能
通常,输入数组可能已经排序或基本排序。 在这种情况下,插入排序可能是更好的选择。
您可能希望根据数据选择合适的排序算法。
用于基准测试的代码可以在这里找到。
您可以完全展开插入排序。
为了简化这一点,可以在没有函数开销的情况下使用递归模板。因为int已经是模板,所以它也可以是模板形参。这也使得编码10以外的数组大小变得很简单。
注意,要排序int x[10],调用insert_sort<int, 9>::sort(x);因为类使用最后一项的索引。这可以被包装,但是需要阅读更多的代码。
template <class T, int NUM>
class insert_sort;
template <class T>
class insert_sort<T,0>
// Stop template recursion
// Sorting one item is a no operation
{
public:
static void place(T *x) {}
static void sort(T * x) {}
};
template <class T, int NUM>
class insert_sort
// Use template recursion to do insertion sort.
// NUM is the index of the last item, e.g. for x[10] call <9>
{
public:
static void place(T *x)
{
T t1=x[NUM-1];
T t2=x[NUM];
if (t1 > t2)
{
x[NUM-1]=t2;
x[NUM]=t1;
insert_sort<T,NUM-1>::place(x);
}
}
static void sort(T * x)
{
insert_sort<T,NUM-1>::sort(x); // Sort everything before
place(x); // Put this item in
}
};
在我的测试中,这比排序网络的例子要快。
(根据@HelloWorld的建议,研究排序网络。)
似乎29个比较/交换网络是进行10个输入排序的最快方法。在这个例子中,我使用了Waksman在1969年发现的JavaScript网络,它应该直接转换成C语言,因为它只是一个if语句、比较和交换的列表。
function sortNet10(data) { // ten-input sorting network by Waksman, 1969 var swap; if (data[0] > data[5]) { swap = data[0]; data[0] = data[5]; data[5] = swap; } if (data[1] > data[6]) { swap = data[1]; data[1] = data[6]; data[6] = swap; } if (data[2] > data[7]) { swap = data[2]; data[2] = data[7]; data[7] = swap; } if (data[3] > data[8]) { swap = data[3]; data[3] = data[8]; data[8] = swap; } if (data[4] > data[9]) { swap = data[4]; data[4] = data[9]; data[9] = swap; } if (data[0] > data[3]) { swap = data[0]; data[0] = data[3]; data[3] = swap; } if (data[5] > data[8]) { swap = data[5]; data[5] = data[8]; data[8] = swap; } if (data[1] > data[4]) { swap = data[1]; data[1] = data[4]; data[4] = swap; } if (data[6] > data[9]) { swap = data[6]; data[6] = data[9]; data[9] = swap; } if (data[0] > data[2]) { swap = data[0]; data[0] = data[2]; data[2] = swap; } if (data[3] > data[6]) { swap = data[3]; data[3] = data[6]; data[6] = swap; } if (data[7] > data[9]) { swap = data[7]; data[7] = data[9]; data[9] = swap; } if (data[0] > data[1]) { swap = data[0]; data[0] = data[1]; data[1] = swap; } if (data[2] > data[4]) { swap = data[2]; data[2] = data[4]; data[4] = swap; } if (data[5] > data[7]) { swap = data[5]; data[5] = data[7]; data[7] = swap; } if (data[8] > data[9]) { swap = data[8]; data[8] = data[9]; data[9] = swap; } if (data[1] > data[2]) { swap = data[1]; data[1] = data[2]; data[2] = swap; } if (data[3] > data[5]) { swap = data[3]; data[3] = data[5]; data[5] = swap; } if (data[4] > data[6]) { swap = data[4]; data[4] = data[6]; data[6] = swap; } if (data[7] > data[8]) { swap = data[7]; data[7] = data[8]; data[8] = swap; } if (data[1] > data[3]) { swap = data[1]; data[1] = data[3]; data[3] = swap; } if (data[4] > data[7]) { swap = data[4]; data[4] = data[7]; data[7] = swap; } if (data[2] > data[5]) { swap = data[2]; data[2] = data[5]; data[5] = swap; } if (data[6] > data[8]) { swap = data[6]; data[6] = data[8]; data[8] = swap; } if (data[2] > data[3]) { swap = data[2]; data[2] = data[3]; data[3] = swap; } if (data[4] > data[5]) { swap = data[4]; data[4] = data[5]; data[5] = swap; } if (data[6] > data[7]) { swap = data[6]; data[6] = data[7]; data[7] = swap; } if (data[3] > data[4]) { swap = data[3]; data[3] = data[4]; data[4] = swap; } if (data[5] > data[6]) { swap = data[5]; data[5] = data[6]; data[6] = swap; } return(data); } document.write(sortNet10([5,7,1,8,4,3,6,9,2,0]));
这里是网络的图形表示,分为独立的阶段。
为了利用并行处理的优势,可以将5-4-3-3 - 4-4-2 -3-2分组改为4-4-4-2 -4-4-3-2分组。