我正在解决一个问题,它涉及到快速排序10个数字(int32)。我的应用程序需要以尽可能快的速度对10个数字进行百万次排序。我正在对一个包含数十亿个元素的数据集进行采样,每次我都需要从中挑选10个数字(简化)并对它们进行排序(并从排序的10个元素列表中得出结论)。
目前我正在使用插入排序,但我想我可以为我的10个数字的特定问题实现一个非常快速的自定义排序算法,这将击败插入排序。
我该如何处理这个问题呢?
我正在解决一个问题,它涉及到快速排序10个数字(int32)。我的应用程序需要以尽可能快的速度对10个数字进行百万次排序。我正在对一个包含数十亿个元素的数据集进行采样,每次我都需要从中挑选10个数字(简化)并对它们进行排序(并从排序的10个元素列表中得出结论)。
目前我正在使用插入排序,但我想我可以为我的10个数字的特定问题实现一个非常快速的自定义排序算法,这将击败插入排序。
我该如何处理这个问题呢?
当前回答
既然可以移动,为什么要交换?一条x86高速缓存线有足够的额外内存供您执行归并排序。
我可能会分别插入排序索引0-1、2-4、5-6、7-9,或者更好的是在插入时保持这些小组的排序,这样每次插入最多需要一到两次移位。
然后合并5、6和7-9 -> 10-14,合并0-1和2-4 -> 5-9,最后合并5-9和10-14 -> 0-9
其他回答
这个问题并没有说这是某种基于web的应用程序。有一件事引起了我的注意:
我正在对一个包含数十亿个元素的数据集进行采样,每次我都需要从中挑选10个数字(简化)并对它们进行排序(并从排序的10个元素列表中得出结论)。
As a software and hardware engineer this absolutely screams FPGA to me. I don't know what kind of conclusions you need to draw from the sorted set of numbers or where the data comes from, but I know it would be almost trivial to process somewhere between one hundred million and a billion of these "sort-and-analyze" operations per second. I've done FPGA-assisted DNA sequencing work in the past. It is nearly impossible to beat the massive processing power of FPGAs when the problem is well suited for that type of a solution.
在某种程度上,唯一的限制因素是将数据铲入FPGA的速度有多快,以及取出数据的速度有多快。
As a point of reference, I designed a high performance real-time image processor that received 32 bit RGB image data at a rate of about 300 million pixels per second. The data streamed through FIR filters, matrix multipliers, lookup tables, spatial edge detection blocks and a number of other operations before coming out the other end. All of this on a relatively small Xilinx Virtex2 FPGA with internal clocking spanning from about 33 MHz to, if I remember correctly, 400 MHz. Oh, yes, it also had a DDR2 controller implementation and ran two banks of DDR2 memory.
当工作在数百MHz时,FPGA可以在每次时钟转换中输出10个32位数字。当数据填满处理管道时,操作开始时会有短暂的延迟。在此之后,您应该能够在每个时钟获得一个结果。如果可以通过复制排序和分析管道使处理并行化,则会更多。原则上,解决方案几乎是微不足道的。
关键在于:如果应用程序不是pc绑定的,并且数据流和处理与FPGA解决方案“兼容”(无论是独立的还是作为机器中的协处理器卡),那么无论使用哪种算法,用任何语言编写的软件都无法击败可达到的性能水平。
我只是快速搜索了一下,找到了一篇可能对你有用的论文。看起来要追溯到2012年。在今天(甚至在过去),您可以在性能上做得更好。下面就是:
fpga上的排序网络
当您处理这个固定大小时,请查看排序网络。这些算法有固定的运行时间,并且独立于它们的输入。对于您的用例,您没有某些排序算法所具有的这种开销。
二进制排序就是这种网络的一种实现。这个方法在CPU上使用len(n) <= 32时效果最好。对于更大的输入,你可以考虑使用GPU。
顺便说一下,比较排序算法的一个好页面是这个(尽管它缺少二进制排序):
排序算法动画
既然可以移动,为什么要交换?一条x86高速缓存线有足够的额外内存供您执行归并排序。
我可能会分别插入排序索引0-1、2-4、5-6、7-9,或者更好的是在插入时保持这些小组的排序,这样每次插入最多需要一到两次移位。
然后合并5、6和7-9 -> 10-14,合并0-1和2-4 -> 5-9,最后合并5-9和10-14 -> 0-9
(根据@HelloWorld的建议,研究排序网络。)
似乎29个比较/交换网络是进行10个输入排序的最快方法。在这个例子中,我使用了Waksman在1969年发现的JavaScript网络,它应该直接转换成C语言,因为它只是一个if语句、比较和交换的列表。
function sortNet10(data) { // ten-input sorting network by Waksman, 1969 var swap; if (data[0] > data[5]) { swap = data[0]; data[0] = data[5]; data[5] = swap; } if (data[1] > data[6]) { swap = data[1]; data[1] = data[6]; data[6] = swap; } if (data[2] > data[7]) { swap = data[2]; data[2] = data[7]; data[7] = swap; } if (data[3] > data[8]) { swap = data[3]; data[3] = data[8]; data[8] = swap; } if (data[4] > data[9]) { swap = data[4]; data[4] = data[9]; data[9] = swap; } if (data[0] > data[3]) { swap = data[0]; data[0] = data[3]; data[3] = swap; } if (data[5] > data[8]) { swap = data[5]; data[5] = data[8]; data[8] = swap; } if (data[1] > data[4]) { swap = data[1]; data[1] = data[4]; data[4] = swap; } if (data[6] > data[9]) { swap = data[6]; data[6] = data[9]; data[9] = swap; } if (data[0] > data[2]) { swap = data[0]; data[0] = data[2]; data[2] = swap; } if (data[3] > data[6]) { swap = data[3]; data[3] = data[6]; data[6] = swap; } if (data[7] > data[9]) { swap = data[7]; data[7] = data[9]; data[9] = swap; } if (data[0] > data[1]) { swap = data[0]; data[0] = data[1]; data[1] = swap; } if (data[2] > data[4]) { swap = data[2]; data[2] = data[4]; data[4] = swap; } if (data[5] > data[7]) { swap = data[5]; data[5] = data[7]; data[7] = swap; } if (data[8] > data[9]) { swap = data[8]; data[8] = data[9]; data[9] = swap; } if (data[1] > data[2]) { swap = data[1]; data[1] = data[2]; data[2] = swap; } if (data[3] > data[5]) { swap = data[3]; data[3] = data[5]; data[5] = swap; } if (data[4] > data[6]) { swap = data[4]; data[4] = data[6]; data[6] = swap; } if (data[7] > data[8]) { swap = data[7]; data[7] = data[8]; data[8] = swap; } if (data[1] > data[3]) { swap = data[1]; data[1] = data[3]; data[3] = swap; } if (data[4] > data[7]) { swap = data[4]; data[4] = data[7]; data[7] = swap; } if (data[2] > data[5]) { swap = data[2]; data[2] = data[5]; data[5] = swap; } if (data[6] > data[8]) { swap = data[6]; data[6] = data[8]; data[8] = swap; } if (data[2] > data[3]) { swap = data[2]; data[2] = data[3]; data[3] = swap; } if (data[4] > data[5]) { swap = data[4]; data[4] = data[5]; data[5] = swap; } if (data[6] > data[7]) { swap = data[6]; data[6] = data[7]; data[7] = swap; } if (data[3] > data[4]) { swap = data[3]; data[3] = data[4]; data[4] = swap; } if (data[5] > data[6]) { swap = data[5]; data[5] = data[6]; data[6] = swap; } return(data); } document.write(sortNet10([5,7,1,8,4,3,6,9,2,0]));
这里是网络的图形表示,分为独立的阶段。
为了利用并行处理的优势,可以将5-4-3-3 - 4-4-2 -3-2分组改为4-4-4-2 -4-4-3-2分组。
尽管网络排序在小数组上有很好的快速几率,但如果适当优化,有时您无法击败插入排序。例如,有2个元素的批量插入:
{
final int a=in[0]<in[1]?in[0]:in[1];
final int b=in[0]<in[1]?in[1]:in[0];
in[0]=a;
in[1]=b;
}
for(int x=2;x<10;x+=2)
{
final int a=in[x]<in[x+1]?in[x]:in[x+1];
final int b=in[x]<in[x+1]?in[x+1]:in[x];
int y= x-1;
while(y>=0&&in[y]>b)
{
in[y+2]= in[y];
--y;
}
in[y+2]=b;
while(y>=0&&in[y]>a)
{
in[y+1]= in[y];
--y;
}
in[y+1]=a;
}