我目前在mysql数据库中有不到一百万个位置,都有经度和纬度信息。

我试图通过查询找到一个点和许多其他点之间的距离。它没有我想要的那么快,尤其是每秒100+次。

有没有比mysql更快的查询或更快的系统?我使用这个查询:

SELECT 
  name, 
   ( 3959 * acos( cos( radians(42.290763) ) * cos( radians( locations.lat ) ) 
   * cos( radians(locations.lng) - radians(-71.35368)) + sin(radians(42.290763)) 
   * sin( radians(locations.lat)))) AS distance 
FROM locations 
WHERE active = 1 
HAVING distance < 10 
ORDER BY distance;

注:提供的距离单位为英里。如果需要公里,请使用6371而不是3959。


当前回答

Create your points using Point values of Geometry data types in MyISAM table. As of Mysql 5.7.5, InnoDB tables now also support SPATIAL indices. Create a SPATIAL index on these points Use MBRContains() to find the values: SELECT * FROM table WHERE MBRContains(LineFromText(CONCAT( '(' , @lon + 10 / ( 111.1 / cos(RADIANS(@lat))) , ' ' , @lat + 10 / 111.1 , ',' , @lon - 10 / ( 111.1 / cos(RADIANS(@lat))) , ' ' , @lat - 10 / 111.1 , ')' ) ,mypoint)

,或MySQL 5.1及以上版本:

    SELECT  *
    FROM    table
    WHERE   MBRContains
                    (
                    LineString
                            (
                            Point (
                                    @lon + 10 / ( 111.1 / COS(RADIANS(@lat))),
                                    @lat + 10 / 111.1
                                  ),
                            Point (
                                    @lon - 10 / ( 111.1 / COS(RADIANS(@lat))),
                                    @lat - 10 / 111.1
                                  ) 
                            ),
                    mypoint
                    )

这将选择方框内的所有点(@lat +/- 10km, @lon +/- 10km)。

这实际上不是一个盒子,而是一个球面矩形:纬度和经度绑定的球面段。这可能与弗朗茨约瑟夫土地上的普通矩形不同,但在大多数有人居住的地方都很接近。

应用额外的过滤来选择圆内的所有内容(不是正方形) 可能会应用额外的精细过滤来考虑大的圆距离(对于大的距离)

其他回答

   select
   (((acos(sin(('$latitude'*pi()/180)) * sin((`lat`*pi()/180))+cos(('$latitude'*pi()/180)) 
    * cos((`lat`*pi()/180)) * cos((('$longitude'- `lng`)*pi()/180))))*180/pi())*60*1.1515) 
    AS distance
    from table having distance<22;

如果你使用的是MySQL 5.7。*,那么你可以使用st_distance_sphere(POINT, POINT)。

Select st_distance_sphere(POINT(-2.997065, 53.404146 ), POINT(58.615349, 23.56676 ))/1000  as distcance

使用mysql

SET @orig_lon = 1.027125;
SET @dest_lon = 1.027125;

SET @orig_lat = 2.398441;
SET @dest_lat = 2.398441;

SET @kmormiles = 6371;-- for distance in miles set to : 3956

SELECT @kmormiles * ACOS(LEAST(COS(RADIANS(@orig_lat)) * 
 COS(RADIANS(@dest_lat)) * COS(RADIANS(@orig_lon - @dest_lon)) + 
 SIN(RADIANS(@orig_lat)) * SIN(RADIANS(@dest_lat)),1.0)) as distance;

参见:https://andrew.hedges.name/experiments/haversine/

参见:https://stackoverflow.com/a/24372831/5155484

参见:http://www.plumislandmedia.net/mysql/haversine-mysql-nearest-loc/

注意:LEAST用于避免null值,如https://stackoverflow.com/a/24372831/5155484上建议的注释

一个MySQL函数,返回两个坐标之间的米数:

CREATE FUNCTION DISTANCE_BETWEEN (lat1 DOUBLE, lon1 DOUBLE, lat2 DOUBLE, lon2 DOUBLE)
RETURNS DOUBLE DETERMINISTIC
RETURN ACOS( SIN(lat1*PI()/180)*SIN(lat2*PI()/180) + COS(lat1*PI()/180)*COS(lat2*PI()/180)*COS(lon2*PI()/180-lon1*PI()/180) ) * 6371000

要以不同的格式返回值,请将函数中的6371000替换为您选择的单位中的地球半径。例如,公里是6371,英里是3959。

要使用该函数,只需像调用MySQL中的任何其他函数一样调用它。例如,如果你有一个表格城市,你可以找到每个城市与其他城市之间的距离:

SELECT
    `city1`.`name`,
    `city2`.`name`,
    ROUND(DISTANCE_BETWEEN(`city1`.`latitude`, `city1`.`longitude`, `city2`.`latitude`, `city2`.`longitude`)) AS `distance`
FROM
    `city` AS `city1`
JOIN
    `city` AS `city2`

关于如何安装为MySQL插件的完整代码在这里:https://github.com/lucasepe/lib_mysqludf_haversine

这是我去年发表的评论。由于@TylerCollier善意地建议我把它作为答案张贴出来,下面就是。

另一种方法是编写一个自定义UDF函数,返回两点之间的哈弗辛距离。这个函数可以接收输入:

lat1 (real), lng1 (real), lat2 (real), lng2 (real), type (string - optinal - 'km', 'ft', 'mi')

所以我们可以这样写:

SELECT id, name FROM MY_PLACES WHERE haversine_distance(lat1, lng1, lat2, lng2) < 40;

获取所有距离小于40公里的记录。或者:

SELECT id, name FROM MY_PLACES WHERE haversine_distance(lat1, lng1, lat2, lng2, 'ft') < 25;

获取所有距离小于25英尺的记录。

核心功能为:

double
haversine_distance( UDF_INIT* initid, UDF_ARGS* args, char* is_null, char *error ) {
    double result = *(double*) initid->ptr;
    /*Earth Radius in Kilometers.*/ 
    double R = 6372.797560856;
    double DEG_TO_RAD = M_PI/180.0;
    double RAD_TO_DEG = 180.0/M_PI;
    double lat1 = *(double*) args->args[0];
    double lon1 = *(double*) args->args[1];
    double lat2 = *(double*) args->args[2];
    double lon2 = *(double*) args->args[3];
    double dlon = (lon2 - lon1) * DEG_TO_RAD;
    double dlat = (lat2 - lat1) * DEG_TO_RAD;
    double a = pow(sin(dlat * 0.5),2) + 
        cos(lat1*DEG_TO_RAD) * cos(lat2*DEG_TO_RAD) * pow(sin(dlon * 0.5),2);
    double c = 2.0 * atan2(sqrt(a), sqrt(1-a));
    result = ( R * c );
    /*
     * If we have a 5th distance type argument...
     */
    if (args->arg_count == 5) {
        str_to_lowercase(args->args[4]);
        if (strcmp(args->args[4], "ft") == 0) result *= 3280.8399;
        if (strcmp(args->args[4], "mi") == 0) result *= 0.621371192;
    }

    return result;
}