图灵完备是什么意思?
你能不能给出一个简单的解释,而不是过多的理论细节?
图灵完备是什么意思?
你能不能给出一个简单的解释,而不是过多的理论细节?
当前回答
非正式的定义
图灵完备语言是一种可以执行任何计算的语言。丘奇-图灵命题指出,任何可执行的计算都可以由图灵机完成。图灵机是一种具有无限随机存取存储器和有限“程序”的机器,该程序规定了它何时应该读取、写入和在内存中移动,何时应该终止于某个结果,以及下一步应该做什么。图灵机的输入在启动前被放入内存中。
可以使一种语言不是图灵完备的东西
图灵机可以根据它在内存中看到的东西做出决定——只支持整数上的+、-、*和/的“语言”不是图灵完备的,因为它不能根据输入做出选择,但图灵机可以。
图灵机可以永远运行——如果我们使用Java、Javascript或Python,并移除执行任何类型的循环、GOTO或函数调用的能力,它就不是图灵完备的,因为它不能执行永远不会结束的任意计算。Coq是一个定理证明,它不能表达不终止的程序,所以它不是图灵完备的。
图灵机可以使用无限内存——一种与Java完全相同但一旦使用超过4g内存就会终止的语言不是图灵完备的,因为图灵机可以使用无限内存。这就是为什么我们实际上无法构建图灵机,但Java仍然是一种图灵完备语言,因为Java语言没有限制它使用无限内存。这就是正则表达式不是图灵完备的原因之一。
A Turing machine has random access memory - A language that only lets you work with memory through push and pop operations to a stack wouldn't be Turing complete. If I have a 'language' that reads a string once and can only use memory by pushing and popping from a stack, it can tell me whether every ( in the string has its own ) later on by pushing when it sees ( and popping when it sees ). However, it can't tell me if every ( has its own ) later on and every [ has its own ] later on (note that ([)] meets this criteria but ([]] does not). A Turing machine can use its random access memory to track ()'s and []'s separately, but this language with only a stack cannot.
图灵机可以模拟任何其他图灵机——当给定一个适当的“程序”时,图灵机可以取另一个图灵机的“程序”,并在任意输入上模拟它。如果你有一种语言被禁止实现Python解释器,它就不是图灵完备的。
图灵完备语言的例子
如果你的语言有无限的随机存取内存、条件执行和某种形式的重复执行,那么它可能是图灵完备的。还有一些更奇特的系统仍然可以实现图灵机所能实现的一切,这使得它们也是图灵完备的:
无类型lambda演算 康威的人生游戏 c++模板 序言
其他回答
关系数据库能否输入地点和道路的经度和纬度,并计算它们之间的最短路径?这是一个表明SQL不是图灵完备的问题。
但是c++可以做到,并且可以解决任何问题。事实就是这样。
正如韦伦·弗林所说:
图灵完备意味着它至少和图灵机一样强大。
我认为这是不正确的,如果一个系统和图灵机一样强大,那么它就是图灵完备的,即机器所做的每一个计算都可以由系统完成,而且系统所做的每一个计算都可以由图灵机完成。
非正式的定义
图灵完备语言是一种可以执行任何计算的语言。丘奇-图灵命题指出,任何可执行的计算都可以由图灵机完成。图灵机是一种具有无限随机存取存储器和有限“程序”的机器,该程序规定了它何时应该读取、写入和在内存中移动,何时应该终止于某个结果,以及下一步应该做什么。图灵机的输入在启动前被放入内存中。
可以使一种语言不是图灵完备的东西
图灵机可以根据它在内存中看到的东西做出决定——只支持整数上的+、-、*和/的“语言”不是图灵完备的,因为它不能根据输入做出选择,但图灵机可以。
图灵机可以永远运行——如果我们使用Java、Javascript或Python,并移除执行任何类型的循环、GOTO或函数调用的能力,它就不是图灵完备的,因为它不能执行永远不会结束的任意计算。Coq是一个定理证明,它不能表达不终止的程序,所以它不是图灵完备的。
图灵机可以使用无限内存——一种与Java完全相同但一旦使用超过4g内存就会终止的语言不是图灵完备的,因为图灵机可以使用无限内存。这就是为什么我们实际上无法构建图灵机,但Java仍然是一种图灵完备语言,因为Java语言没有限制它使用无限内存。这就是正则表达式不是图灵完备的原因之一。
A Turing machine has random access memory - A language that only lets you work with memory through push and pop operations to a stack wouldn't be Turing complete. If I have a 'language' that reads a string once and can only use memory by pushing and popping from a stack, it can tell me whether every ( in the string has its own ) later on by pushing when it sees ( and popping when it sees ). However, it can't tell me if every ( has its own ) later on and every [ has its own ] later on (note that ([)] meets this criteria but ([]] does not). A Turing machine can use its random access memory to track ()'s and []'s separately, but this language with only a stack cannot.
图灵机可以模拟任何其他图灵机——当给定一个适当的“程序”时,图灵机可以取另一个图灵机的“程序”,并在任意输入上模拟它。如果你有一种语言被禁止实现Python解释器,它就不是图灵完备的。
图灵完备语言的例子
如果你的语言有无限的随机存取内存、条件执行和某种形式的重复执行,那么它可能是图灵完备的。还有一些更奇特的系统仍然可以实现图灵机所能实现的一切,这使得它们也是图灵完备的:
无类型lambda演算 康威的人生游戏 c++模板 序言
以下是最简单的解释:
图灵完备系统指的是这样一个系统,在这个系统中,可以编写程序来找到答案(尽管不保证运行时间或内存)。
所以,如果有人说“我的新东西是图灵完备的”,这意味着在原则上(尽管通常不是在实践中)它可以用来解决任何计算问题。
有时候这是个玩笑……有人用vi写了一个图灵机模拟器,所以可以说vi是世界上唯一需要的计算引擎。
从维基百科:
Turing completeness, named after Alan Turing, is significant in that every plausible design for a computing device so far advanced can be emulated by a universal Turing machine — an observation that has become known as the Church-Turing thesis. Thus, a machine that can act as a universal Turing machine can, in principle, perform any calculation that any other programmable computer is capable of. However, this has nothing to do with the effort required to write a program for the machine, the time it may take for the machine to perform the calculation, or any abilities the machine may possess that are unrelated to computation. While truly Turing-complete machines are very likely physically impossible, as they require unlimited storage, Turing completeness is often loosely attributed to physical machines or programming languages that would be universal if they had unlimited storage. All modern computers are Turing-complete in this sense.
我不知道你怎么能比这更非技术,除了说“图灵完备意味着‘能够在足够的时间和空间内回答可计算的问题’”。