图灵完备是什么意思?

你能不能给出一个简单的解释,而不是过多的理论细节?


当前回答

这是最简单的解释

艾伦·图灵创造了一台机器,它可以接收程序,运行程序,并显示结果。但是他必须为不同的程序创造不同的机器。所以他发明了“通用图灵机”,可以接收并运行任何程序。

编程语言类似于这些机器(尽管是虚拟的)。他们获取程序并运行它们。现在,一种编程语言被称为“图灵完备”,如果它可以运行图灵机在足够的时间和内存下可以运行的任何程序(无论哪种语言)。

例如:假设有一个程序需要10个数字并将它们相加。图灵机可以很容易地运行这个程序。但是现在想象一下,由于某种原因,您的编程语言不能执行相同的加法。这将使它成为“图灵不完整”(可以这么说)。另一方面,如果它能运行通用图灵机能运行的任何程序,那么它就是图灵完备的。

大多数现代编程语言(如Java、JavaScript、Perl等)都是图灵完备语言,因为它们都实现了运行程序所需的所有功能,如加法、乘法、if-else条件、返回语句、存储/检索/擦除数据的方法等等。

更新:你可以在我的博客文章中了解更多:“JavaScript是图灵完备的”-已解释

其他回答

用最简单的术语来说,图灵完备系统可以解决任何可能的计算问题。

关键要求之一是便签大小不受限制,并且可以倒带访问之前对便签的写操作。

因此在实践中没有一个系统是图灵完备的。

相反,有些系统通过对无界内存建模并执行任何可能的计算来接近图灵完备性。

从维基百科:

Turing completeness, named after Alan Turing, is significant in that every plausible design for a computing device so far advanced can be emulated by a universal Turing machine — an observation that has become known as the Church-Turing thesis. Thus, a machine that can act as a universal Turing machine can, in principle, perform any calculation that any other programmable computer is capable of. However, this has nothing to do with the effort required to write a program for the machine, the time it may take for the machine to perform the calculation, or any abilities the machine may possess that are unrelated to computation. While truly Turing-complete machines are very likely physically impossible, as they require unlimited storage, Turing completeness is often loosely attributed to physical machines or programming languages that would be universal if they had unlimited storage. All modern computers are Turing-complete in this sense.

我不知道你怎么能比这更非技术,除了说“图灵完备意味着‘能够在足够的时间和空间内回答可计算的问题’”。

这是最简单的解释

艾伦·图灵创造了一台机器,它可以接收程序,运行程序,并显示结果。但是他必须为不同的程序创造不同的机器。所以他发明了“通用图灵机”,可以接收并运行任何程序。

编程语言类似于这些机器(尽管是虚拟的)。他们获取程序并运行它们。现在,一种编程语言被称为“图灵完备”,如果它可以运行图灵机在足够的时间和内存下可以运行的任何程序(无论哪种语言)。

例如:假设有一个程序需要10个数字并将它们相加。图灵机可以很容易地运行这个程序。但是现在想象一下,由于某种原因,您的编程语言不能执行相同的加法。这将使它成为“图灵不完整”(可以这么说)。另一方面,如果它能运行通用图灵机能运行的任何程序,那么它就是图灵完备的。

大多数现代编程语言(如Java、JavaScript、Perl等)都是图灵完备语言,因为它们都实现了运行程序所需的所有功能,如加法、乘法、if-else条件、返回语句、存储/检索/擦除数据的方法等等。

更新:你可以在我的博客文章中了解更多:“JavaScript是图灵完备的”-已解释

以下是最简单的解释:

图灵完备系统指的是这样一个系统,在这个系统中,可以编写程序来找到答案(尽管不保证运行时间或内存)。

所以,如果有人说“我的新东西是图灵完备的”,这意味着在原则上(尽管通常不是在实践中)它可以用来解决任何计算问题。

有时候这是个玩笑……有人用vi写了一个图灵机模拟器,所以可以说vi是世界上唯一需要的计算引擎。

We call a language Turing-complete if and only if (1) it is decidable by a Turing machine but (2) not by anything less capable than a Turing machine. For instance, the language of palindromes over the alphabet {a, b} is decidable by Turing machines, but also by pushdown automata; so, this language is not Turing-complete. Truly Turing-complete languages - ones that require the full computing power of Turing machines - are pretty rare. Perhaps the language of strings x.y.z where x is a number, y is a Turing-machine and z is an initial tape configuration, and y halts on z in fewer than x! steps - perhaps that qualifies (though it would need to be shown!)

A common imprecise usage confuses Turing-completeness with Turing-equivalence. Turing-equivalence refers to the property of a computational system which can simulate, and which can be simulated by, Turing machines. We might say Java is a Turing-equivalent programming language, for instance, because you can write a Turing-machine simulator in Java, and because you could define a Turing machine that simulates execution of Java programs. According to the Church-Turing thesis, Turing machines can perform any effective computation, so Turing-equivalence means a system is as capable as possible (if the Church-Turing thesis is true!)

图灵等价比真正的图灵完备性更主流;这一点以及“完全”比“等效”短的事实可能解释了为什么“图灵完全”经常被误用为图灵等效,但我离题了。