我试图写一个c++程序,从用户获取以下输入来构造矩形(2和5之间):高度,宽度,x-pos, y-pos。所有这些矩形都平行于x轴和y轴,也就是说它们所有边的斜率都是0或无穷大。

我试图实现这个问题中提到的东西,但我没有太多的运气。

我目前的实现如下:

// Gets all the vertices for Rectangle 1 and stores them in an array -> arrRect1
// point 1 x: arrRect1[0], point 1 y: arrRect1[1] and so on...
// Gets all the vertices for Rectangle 2 and stores them in an array -> arrRect2

// rotated edge of point a, rect 1
int rot_x, rot_y;
rot_x = -arrRect1[3];
rot_y = arrRect1[2];
// point on rotated edge
int pnt_x, pnt_y;
pnt_x = arrRect1[2]; 
pnt_y = arrRect1[3];
// test point, a from rect 2
int tst_x, tst_y;
tst_x = arrRect2[0];
tst_y = arrRect2[1];

int value;
value = (rot_x * (tst_x - pnt_x)) + (rot_y * (tst_y - pnt_y));
cout << "Value: " << value;  

然而,我不太确定(a)我是否已经正确地实现了我链接的算法,或者如果我确实如何解释这一点?

有什么建议吗?


当前回答

bool Square::IsOverlappig(Square &other)
{
    bool result1 = other.x >= x && other.y >= y && other.x <= (x + width) && other.y <= (y + height); // other's top left falls within this area
    bool result2 = other.x >= x && other.y <= y && other.x <= (x + width) && (other.y + other.height) <= (y + height); // other's bottom left falls within this area
    bool result3 = other.x <= x && other.y >= y && (other.x + other.width) <= (x + width) && other.y <= (y + height); // other's top right falls within this area
    bool result4 = other.x <= x && other.y <= y && (other.x + other.width) >= x && (other.y + other.height) >= y; // other's bottom right falls within this area
    return result1 | result2 | result3 | result4;
}

其他回答

不要认为坐标表示像素的位置。把它们想象成像素之间。这样,2x2矩形的面积应该是4,而不是9。

bool bOverlap = !((A.Left >= B.Right || B.Left >= A.Right)
               && (A.Bottom >= B.Top || B.Bottom >= A.Top));

我已经实现了c#版本,它很容易转换为c++。

public bool Intersects ( Rectangle rect )
{
  float ulx = Math.Max ( x, rect.x );
  float uly = Math.Max ( y, rect.y );
  float lrx = Math.Min ( x + width, rect.x + rect.width );
  float lry = Math.Min ( y + height, rect.y + rect.height );

  return ulx <= lrx && uly <= lry;
}

更容易检查一个矩形是否完全在另一个矩形之外,如果它是其中之一

在左边……

(r1.x + r1.width < r2.x)

或者在右边…

(r1.x > r2.x + r2.width)

或者在上面…

(r1.y + r1.height < r2.y)

或者在底部…

(r1.y > r2.y + r2.height)

对于第二个矩形,它不可能与它碰撞。因此,要有一个返回布尔值的函数,表示矩形是否碰撞,我们只需通过逻辑or组合这些条件,并对结果求反:

function checkOverlap(r1, r2) : Boolean
{ 
    return !(r1.x + r1.width < r2.x || r1.y + r1.height < r2.y || r1.x > r2.x + r2.width || r1.y > r2.y + r2.height);
}

如果只在触摸时得到阳性结果,我们可以通过“<=”和“>=”来更改“<”和“>”。

在问题中,你链接到矩形旋转角度任意时的数学。然而,如果我理解了问题中关于角度的部分,我就会理解为所有的矩形都是相互垂直的。

一般已知重叠面积的公式为:

举个例子:

   1   2   3   4   5   6

1  +---+---+
   |       |   
2  +   A   +---+---+
   |       | B     |
3  +       +   +---+---+
   |       |   |   |   |
4  +---+---+---+---+   +
               |       |
5              +   C   +
               |       |
6              +---+---+

1)收集所有的x坐标(包括左边和右边)到一个列表中,然后排序并删除重复的

1 3 4 5 6

2)收集所有的y坐标(包括顶部和底部)到一个列表中,然后排序并删除重复的

1 2 3 4 6

3)通过唯一x坐标之间的间隙数量*唯一y坐标之间的间隙数量创建一个2D数组。

4 * 4

4)将所有矩形绘制到这个网格中,增加每个单元格的计数:

   1   3   4   5   6

1  +---+
   | 1 | 0   0   0
2  +---+---+---+
   | 1 | 1 | 1 | 0
3  +---+---+---+---+
   | 1 | 1 | 2 | 1 |
4  +---+---+---+---+
     0   0 | 1 | 1 |
6          +---+---+

5)当你绘制矩形时,很容易截取重叠部分。

struct Rect
{
   Rect(int x1, int x2, int y1, int y2)
   : x1(x1), x2(x2), y1(y1), y2(y2)
   {
       assert(x1 < x2);
       assert(y1 < y2);
   }

   int x1, x2, y1, y2;
};

//some area of the r1 overlaps r2
bool overlap(const Rect &r1, const Rect &r2)
{
    return r1.x1 < r2.x2 && r2.x1 < r1.x2 &&
           r1.y1 < r2.y2 && r2.x1 < r1.y2;
}

//either the rectangles overlap or the edges touch
bool touch(const Rect &r1, const Rect &r2)
{
    return r1.x1 <= r2.x2 && r2.x1 <= r1.x2 &&
           r1.y1 <= r2.y2 && r2.x1 <= r1.y2;
}