我有一个Numpy数组类型的矩阵。我怎么把它作为映像写到磁盘上呢?任何格式都可以(png, jpeg, bmp…)一个重要的限制是PIL不存在。
当前回答
下面的答案中有@Nima Farhadi在时间测量方面提出的方法。
最快的是CV2,但重要的是要改变颜色顺序从RGB到BGR。简单的是matplotlib。
重要的是要确保数组有unsigned integer format uint8/16/32。
代码:
#Matplotlib
from matplotlib import pyplot as plt
plt.imsave('c_plt.png', c.astype(np.uint8))
#PIL
from PIL import Image
image = Image.fromarray(c.astype(np.uint8))
image.save('c_pil.png')
#CV2, OpenCV
import cv2
cv2.imwrite('c_cv2.png', cv2.cvtColor(c, cv2.COLOR_RGB2BGR))
其他回答
如果你碰巧已经在使用[Py]Qt,你可能会对qimage2ndarray感兴趣。从版本1.4(刚刚发布)开始,PySide也得到了支持,并且将有一个类似于scipy的微小imsave(文件名,数组)函数,但使用Qt而不是PIL。在1.3版本中,只需使用如下代码:
qImage = array2qimage(image, normalize = False) # create QImage from ndarray
success = qImage.save(filename) # use Qt's image IO functions for saving PNG/JPG/..
(1.4的另一个优点是它是一个纯python解决方案,这使得它更加轻量级。)
这使用PIL,但是有些人可能会发现它很有用:
import scipy.misc
scipy.misc.imsave('outfile.jpg', image_array)
编辑:当前scipy版本开始规范化所有图像,使min(数据)变成黑色,max(数据)变成白色。如果数据应该是精确的灰色级别或精确的RGB通道,这是不需要的。解决方案:
import scipy.misc
scipy.misc.toimage(image_array, cmin=0.0, cmax=...).save('outfile.jpg')
下面的答案中有@Nima Farhadi在时间测量方面提出的方法。
最快的是CV2,但重要的是要改变颜色顺序从RGB到BGR。简单的是matplotlib。
重要的是要确保数组有unsigned integer format uint8/16/32。
代码:
#Matplotlib
from matplotlib import pyplot as plt
plt.imsave('c_plt.png', c.astype(np.uint8))
#PIL
from PIL import Image
image = Image.fromarray(c.astype(np.uint8))
image.save('c_pil.png')
#CV2, OpenCV
import cv2
cv2.imwrite('c_cv2.png', cv2.cvtColor(c, cv2.COLOR_RGB2BGR))
Matplotlib SVN有一个新函数,可以将图像保存为图像-没有轴等,这是一个非常简单的函数,如果你不想安装SVN(直接从Matplotlib SVN中的image.py复制,为了简洁,删除了文档字符串):
def imsave(fname, arr, vmin=None, vmax=None, cmap=None, format=None, origin=None):
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
from matplotlib.figure import Figure
fig = Figure(figsize=arr.shape[::-1], dpi=1, frameon=False)
canvas = FigureCanvas(fig)
fig.figimage(arr, cmap=cmap, vmin=vmin, vmax=vmax, origin=origin)
fig.savefig(fname, dpi=1, format=format)
Imageio是一个Python库,它提供了一个简单的接口来读取和写入广泛的图像数据,包括动画图像、视频、体积数据和科学格式。它是跨平台的,运行在Python 2.7和3.4+上,易于安装。
这是一个灰度图像的例子:
import numpy as np
import imageio
# data is numpy array with grayscale value for each pixel.
data = np.array([70,80,82,72,58,58,60,63,54,58,60,48,89,115,121,119])
# 16 pixels can be converted into square of 4x4 or 2x8 or 8x2
data = data.reshape((4, 4)).astype('uint8')
# save image
imageio.imwrite('pic.jpg', data)
推荐文章
- 证书验证失败:无法获得本地颁发者证书
- 当使用pip3安装包时,“Python中的ssl模块不可用”
- 无法切换Python与pyenv
- Python if not == vs if !=
- 如何从scikit-learn决策树中提取决策规则?
- 为什么在Mac OS X v10.9 (Mavericks)的终端中apt-get功能不起作用?
- 将旋转的xtick标签与各自的xtick对齐
- 为什么元组可以包含可变项?
- 如何合并字典的字典?
- 如何创建类属性?
- 不区分大小写的“in”
- 在Python中获取迭代器中的元素个数
- 解析日期字符串并更改格式
- 使用try和。Python中的if
- 如何在Python中获得所有直接子目录