我需要在一个图表中绘制一个显示计数的柱状图和一个显示率的折线图,我可以分别做这两个,但当我把它们放在一起时,我的第一层(即geom_bar)的比例被第二层(即geom_line)重叠。

我可以将geom_line的轴向右移动吗?


当前回答

我发现这个答案对我帮助最大,但发现有一些边缘情况,它似乎不能正确处理,特别是消极的情况,以及极限距离为0的情况(如果我们从最大/最小数据中获取极限,就会发生这种情况)。测试似乎表明,这是一致的

我使用以下代码。这里我假设我们有[x1,x2]我们想把它变换成[y1,y2]。我处理这个问题的方法是将[x1,x2]转换为[0,1](一个足够简单的转换),然后[0,1]转换为[y1,y2]。

climate <- tibble(
  Month = 1:12,
  Temp = c(-4,-4,0,5,11,15,16,15,11,6,1,-3),
  Precip = c(49,36,47,41,53,65,81,89,90,84,73,55)
)
#Set the limits of each axis manually:

  ylim.prim <- c(0, 180)   # in this example, precipitation
ylim.sec <- c(-4, 18)    # in this example, temperature



  b <- diff(ylim.sec)/diff(ylim.prim)

#If all values are the same this messes up the transformation, so we need to modify it here
if(b==0){
  ylim.sec <- c(ylim.sec[1]-1, ylim.sec[2]+1)
  b <- diff(ylim.sec)/diff(ylim.prim)
}
if (is.na(b)){
  ylim.prim <- c(ylim.prim[1]-1, ylim.prim[2]+1)
  b <- diff(ylim.sec)/diff(ylim.prim)
}


ggplot(climate, aes(Month, Precip)) +
  geom_col() +
  geom_line(aes(y = ylim.prim[1]+(Temp-ylim.sec[1])/b), color = "red") +
  scale_y_continuous("Precipitation", sec.axis = sec_axis(~((.-ylim.prim[1]) *b  + ylim.sec[1]), name = "Temperature"), limits = ylim.prim) +
  scale_x_continuous("Month", breaks = 1:12) +
  ggtitle("Climatogram for Oslo (1961-1990)")  

这里的关键部分是,我们用~((.-ylim.prim[1]) *b + ylim.sec[1])转换次要y轴,然后对实际值y = ylim.prim[1]+(Temp-ylim.sec[1])/b)应用逆。我们还应该确保limits = ylim.prim。

其他回答

总有办法的。

这里有一个解决方案,允许完全任意轴而不重新缩放。其思想是生成两个除了轴以外完全相同的图,并使用cowplot包中的insert_yaxis_grob和get_y_axis函数将它们组合在一起。

library(ggplot2)
library(cowplot)

## first plot 
p1 <- ggplot(mtcars,aes(disp,hp,color=as.factor(am))) + 
    geom_point() + theme_bw() + theme(legend.position='top', text=element_text(size=16)) +
    ylab("Horse points" )+ xlab("Display size") + scale_color_discrete(name='Transmitter') +
    stat_smooth(se=F)

## same plot with different, arbitrary scale   
p2 <- p1 +
    scale_y_continuous(position='right',breaks=seq(120,173,length.out = 3),
                       labels=c('little','medium little','medium hefty'))

ggdraw(insert_yaxis_grob(p1,get_y_axis(p2,position='right')))

有时客户想要两个y刻度。给他们“有缺陷”的演讲通常是毫无意义的。但是我喜欢ggplot2坚持以正确的方式做事。我确信ggplot实际上是在向普通用户传授正确的可视化技术。

也许你可以使用面形和无比例来比较两个数据序列?看这里:https://github.com/hadley/ggplot2/wiki/Align-two-plots-on-a-page

根据上面的答案和一些微调(无论它有什么价值),这里有一种通过sec_axis实现两个尺度的方法:

假设有一个简单的(完全虚构的)数据集dt:在五天的时间里,它追踪了被打断的次数VS工作效率:

        when numinter prod
1 2018-03-20        1 0.95
2 2018-03-21        5 0.50
3 2018-03-23        4 0.70
4 2018-03-24        3 0.75
5 2018-03-25        4 0.60

(两列的范围相差大约5倍)。

下面的代码将画出它们占用整个y轴的两个级数:

ggplot() + 
  geom_bar(mapping = aes(x = dt$when, y = dt$numinter), stat = "identity", fill = "grey") +
  geom_line(mapping = aes(x = dt$when, y = dt$prod*5), size = 2, color = "blue") + 
  scale_x_date(name = "Day", labels = NULL) +
  scale_y_continuous(name = "Interruptions/day", 
    sec.axis = sec_axis(~./5, name = "Productivity % of best", 
      labels = function(b) { paste0(round(b * 100, 0), "%")})) + 
  theme(
      axis.title.y = element_text(color = "grey"),
      axis.title.y.right = element_text(color = "blue"))

下面是结果(上面的代码+一些颜色调整):

重点(除了在指定y_scale时使用sec_axis之外)是在指定系列时将第二个数据系列的每个值与5相乘。为了在sec_axis定义中获得正确的标签,它需要除以5(并格式化)。因此,上述代码中的关键部分实际上是geom_line和~中的*5。sec_axis中的/5(一个除当前值的公式。5)。

相比之下(我不想在这里判断方法),这是两个图表叠加在一起的样子:

你可以自己判断哪一个能更好地传递信息(“不要打扰别人工作!”)。我想这是一个公平的决定方式。

这两个图像的完整代码(实际上并没有比上面更多,只是完成并准备运行)在这里:https://gist.github.com/sebastianrothbucher/de847063f32fdff02c83b75f59c36a7d更详细的解释在这里:https://sebastianrothbucher.github.io/datascience/r/visualization/ggplot/2018/03/24/two-scales-ggplot-r.html

我发现这个答案对我帮助最大,但发现有一些边缘情况,它似乎不能正确处理,特别是消极的情况,以及极限距离为0的情况(如果我们从最大/最小数据中获取极限,就会发生这种情况)。测试似乎表明,这是一致的

我使用以下代码。这里我假设我们有[x1,x2]我们想把它变换成[y1,y2]。我处理这个问题的方法是将[x1,x2]转换为[0,1](一个足够简单的转换),然后[0,1]转换为[y1,y2]。

climate <- tibble(
  Month = 1:12,
  Temp = c(-4,-4,0,5,11,15,16,15,11,6,1,-3),
  Precip = c(49,36,47,41,53,65,81,89,90,84,73,55)
)
#Set the limits of each axis manually:

  ylim.prim <- c(0, 180)   # in this example, precipitation
ylim.sec <- c(-4, 18)    # in this example, temperature



  b <- diff(ylim.sec)/diff(ylim.prim)

#If all values are the same this messes up the transformation, so we need to modify it here
if(b==0){
  ylim.sec <- c(ylim.sec[1]-1, ylim.sec[2]+1)
  b <- diff(ylim.sec)/diff(ylim.prim)
}
if (is.na(b)){
  ylim.prim <- c(ylim.prim[1]-1, ylim.prim[2]+1)
  b <- diff(ylim.sec)/diff(ylim.prim)
}


ggplot(climate, aes(Month, Precip)) +
  geom_col() +
  geom_line(aes(y = ylim.prim[1]+(Temp-ylim.sec[1])/b), color = "red") +
  scale_y_continuous("Precipitation", sec.axis = sec_axis(~((.-ylim.prim[1]) *b  + ylim.sec[1]), name = "Temperature"), limits = ylim.prim) +
  scale_x_continuous("Month", breaks = 1:12) +
  ggtitle("Climatogram for Oslo (1961-1990)")  

这里的关键部分是,我们用~((.-ylim.prim[1]) *b + ylim.sec[1])转换次要y轴,然后对实际值y = ylim.prim[1]+(Temp-ylim.sec[1])/b)应用逆。我们还应该确保limits = ylim.prim。

这在ggplot2中是不可能的,因为我认为具有单独y尺度的图(不是相互转换的y尺度)从根本上是有缺陷的。一些问题:

The are not invertible: given a point on the plot space, you can not uniquely map it back to a point in the data space. They are relatively hard to read correctly compared to other options. See A Study on Dual-Scale Data Charts by Petra Isenberg, Anastasia Bezerianos, Pierre Dragicevic, and Jean-Daniel Fekete for details. They are easily manipulated to mislead: there is no unique way to specify the relative scales of the axes, leaving them open to manipulation. Two examples from the Junkcharts blog: one, two They are arbitrary: why have only 2 scales, not 3, 4 or ten?

你也可能想要阅读Stephen Few关于双缩放轴在图形中的主题的冗长讨论,它们是最好的解决方案吗?