我需要在一个图表中绘制一个显示计数的柱状图和一个显示率的折线图,我可以分别做这两个,但当我把它们放在一起时,我的第一层(即geom_bar)的比例被第二层(即geom_line)重叠。
我可以将geom_line的轴向右移动吗?
我需要在一个图表中绘制一个显示计数的柱状图和一个显示率的折线图,我可以分别做这两个,但当我把它们放在一起时,我的第一层(即geom_bar)的比例被第二层(即geom_line)重叠。
我可以将geom_line的轴向右移动吗?
当前回答
这在ggplot2中是不可能的,因为我认为具有单独y尺度的图(不是相互转换的y尺度)从根本上是有缺陷的。一些问题:
The are not invertible: given a point on the plot space, you can not uniquely map it back to a point in the data space. They are relatively hard to read correctly compared to other options. See A Study on Dual-Scale Data Charts by Petra Isenberg, Anastasia Bezerianos, Pierre Dragicevic, and Jean-Daniel Fekete for details. They are easily manipulated to mislead: there is no unique way to specify the relative scales of the axes, leaving them open to manipulation. Two examples from the Junkcharts blog: one, two They are arbitrary: why have only 2 scales, not 3, 4 or ten?
你也可能想要阅读Stephen Few关于双缩放轴在图形中的主题的冗长讨论,它们是最好的解决方案吗?
其他回答
从ggplot2 2.2.0开始,您可以添加如下的辅助轴(取自ggplot2 2.2.0公告):
ggplot(mpg, aes(displ, hwy)) +
geom_point() +
scale_y_continuous(
"mpg (US)",
sec.axis = sec_axis(~ . * 1.20, name = "mpg (UK)")
)
对我来说,棘手的部分是计算出两个轴之间的变换函数。我用的是我的curvefit。
> dput(combined_80_8192 %>% filter (time > 270, time < 280))
structure(list(run = c(268L, 268L, 268L, 268L, 268L, 268L, 268L,
268L, 268L, 268L, 263L, 263L, 263L, 263L, 263L, 263L, 263L, 263L,
263L, 263L, 269L, 269L, 269L, 269L, 269L, 269L, 269L, 269L, 269L,
269L, 261L, 261L, 261L, 261L, 261L, 261L, 261L, 261L, 261L, 261L,
267L, 267L, 267L, 267L, 267L, 267L, 267L, 267L, 267L, 267L, 265L,
265L, 265L, 265L, 265L, 265L, 265L, 265L, 265L, 265L, 266L, 266L,
266L, 266L, 266L, 266L, 266L, 266L, 266L, 266L, 262L, 262L, 262L,
262L, 262L, 262L, 262L, 262L, 262L, 262L, 264L, 264L, 264L, 264L,
264L, 264L, 264L, 264L, 264L, 264L, 260L, 260L, 260L, 260L, 260L,
260L, 260L, 260L, 260L, 260L), repetition = c(8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L
), module = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = "scenario.node[0].nicVLCTail.phyVLC", class = "factor"),
configname = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L), .Label = "Road-Vlc", class = "factor"), packetByteLength = c(8192L,
8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L,
8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L,
8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L,
8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L,
8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L,
8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L,
8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L,
8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L,
8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L,
8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L,
8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L
), numVehicles = c(2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L
), dDistance = c(80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L,
80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L,
80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L,
80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L,
80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L,
80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L,
80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L,
80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L,
80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L), time = c(270.166006903445,
271.173853699836, 272.175873251122, 273.177524313334, 274.182946177105,
275.188959464989, 276.189675339937, 277.198250244799, 278.204619457189,
279.212562800009, 270.164199199177, 271.168527215152, 272.173072994958,
273.179210429715, 274.184351047337, 275.18980754378, 276.194816792995,
277.198598277809, 278.202398083519, 279.210634593917, 270.210674322891,
271.212395107473, 272.218871923292, 273.219060500457, 274.220486359614,
275.22401452372, 276.229646658839, 277.231060448138, 278.240407241942,
279.2437126347, 270.283554249858, 271.293168593832, 272.298574288769,
273.304413221348, 274.306272082517, 275.309023049011, 276.317805897347,
277.324403550028, 278.332855848701, 279.334046374594, 270.118608539613,
271.127947700074, 272.133887145863, 273.135726000491, 274.135994529981,
275.136563912708, 276.140120735361, 277.144298344151, 278.146885137621,
279.147552358659, 270.206015567272, 271.214618077209, 272.216566814903,
273.225435592582, 274.234014573683, 275.242949179958, 276.248417809711,
277.248800670023, 278.249750333404, 279.252926560188, 270.217182684494,
271.218357511397, 272.224698488895, 273.231112784327, 274.238740508457,
275.242715184122, 276.249053562718, 277.250325509798, 278.258488063493,
279.261141590137, 270.282904173953, 271.284689544638, 272.294220723234,
273.299749415592, 274.30628880553, 275.312075103126, 276.31579134717,
277.321905523606, 278.326305136748, 279.333056502253, 270.258991527456,
271.260224091407, 272.270076810133, 273.27052037648, 274.274119348094,
275.280808254502, 276.286353887245, 277.287064312339, 278.294444793276,
279.296772014594, 270.333066283904, 271.33877455992, 272.345842319903,
273.350858180493, 274.353972278505, 275.360454510107, 276.365088896161,
277.369166956941, 278.372571708911, 279.38017503079), distanceToTx = c(80.255266401689,
80.156059067023, 79.98823695539, 79.826647129071, 79.76678667135,
79.788239825292, 79.734539327997, 79.74766421514, 79.801243848241,
79.765920888341, 80.255266401689, 80.15850240049, 79.98823695539,
79.826647129071, 79.76678667135, 79.788239825292, 79.735078924078,
79.74766421514, 79.801243848241, 79.764622734914, 80.251248121732,
80.146436869316, 79.984682320466, 79.82292012342, 79.761908518748,
79.796988776281, 79.736920997657, 79.745038376718, 79.802638836686,
79.770029970452, 80.243475525691, 80.127918207499, 79.978303140866,
79.816259117883, 79.749322030693, 79.809916018889, 79.744456560867,
79.738655068783, 79.788697533211, 79.784288359619, 80.260412958482,
80.168426829066, 79.992034911214, 79.830845773284, 79.7756751763,
79.778156038931, 79.732399593756, 79.752769548846, 79.799967731078,
79.757585110481, 80.251248121732, 80.146436869316, 79.984682320466,
79.822062073459, 79.75884601899, 79.801590491435, 79.738335109094,
79.74347007248, 79.803215965043, 79.771471198955, 80.250257298678,
80.146436869316, 79.983831684476, 79.822062073459, 79.75884601899,
79.801590491435, 79.738335109094, 79.74347007248, 79.803849157574,
79.771471198955, 80.243475525691, 80.130180105198, 79.978303140866,
79.816881283718, 79.749322030693, 79.80984572883, 79.744456560867,
79.738655068783, 79.790548644175, 79.784288359619, 80.246349000313,
80.137056554491, 79.980581246037, 79.818924707937, 79.753176142361,
79.808777040341, 79.741609845588, 79.740770913572, 79.796316397253,
79.777593733292, 80.238796415443, 80.119021911134, 79.974810568944,
79.814065350562, 79.743657315504, 79.810146783217, 79.749945098869,
79.737122584544, 79.781650522348, 79.791554933936), headerNoError = c(0.99999999989702,
0.9999999999981, 0.99999999999946, 0.9999999928026, 0.99999873265475,
0.77080141574964, 0.99007491438593, 0.99994396605059, 0.45588747062284,
0.93484381262491, 0.99999999989702, 0.99999999999816, 0.99999999999946,
0.9999999928026, 0.99999873265475, 0.77080141574964, 0.99008458785106,
0.99994396605059, 0.45588747062284, 0.93480223051707, 0.99999999989735,
0.99999999999789, 0.99999999999946, 0.99999999287551, 0.99999876302649,
0.46903147501117, 0.98835168988253, 0.99994427085086, 0.45235035271542,
0.93496741877335, 0.99999999989803, 0.99999999999781, 0.99999999999948,
0.99999999318224, 0.99994254156311, 0.46891362282273, 0.93382613917348,
0.99994594904099, 0.93002915596843, 0.93569767251247, 0.99999999989658,
0.99999999998074, 0.99999999999946, 0.99999999272802, 0.99999871586781,
0.76935240919896, 0.99002587758346, 0.99999881589732, 0.46179415706093,
0.93417422376389, 0.99999999989735, 0.99999999999789, 0.99999999999946,
0.99999999289347, 0.99999876940486, 0.46930769326427, 0.98837353639905,
0.99994447154714, 0.16313586712094, 0.93500824170148, 0.99999999989744,
0.99999999999789, 0.99999999999946, 0.99999999289347, 0.99999876940486,
0.46930769326427, 0.98837353639905, 0.99994447154714, 0.16330039178981,
0.93500824170148, 0.99999999989803, 0.99999999999781, 0.99999999999948,
0.99999999316541, 0.99994254156311, 0.46794586553266, 0.93382613917348,
0.99994594904099, 0.9303627789484, 0.93569767251247, 0.99999999989778,
0.9999999999978, 0.99999999999948, 0.99999999311433, 0.99999878195152,
0.47101897739483, 0.93368891853679, 0.99994556595217, 0.7571113417265,
0.93553999975802, 0.99999999998191, 0.99999999999784, 0.99999999999971,
0.99999891129658, 0.99994309267792, 0.46510628979591, 0.93442584181035,
0.99894450514543, 0.99890078483692, 0.76933812306423), receivedPower_dbm = c(-93.023492290586,
-92.388378035287, -92.205716340607, -93.816400586752, -95.023489422885,
-100.86308557253, -98.464763536915, -96.175707680373, -102.06189538385,
-99.716653422746, -93.023492290586, -92.384760627397, -92.205716340607,
-93.816400586752, -95.023489422885, -100.86308557253, -98.464201120719,
-96.175707680373, -102.06189538385, -99.717150021506, -93.022927803442,
-92.404017215549, -92.204561341714, -93.814319484729, -95.016990717792,
-102.01669022332, -98.558088145955, -96.173817001483, -102.07406915124,
-99.71517574876, -93.021813165972, -92.409586309743, -92.20229160243,
-93.805335867418, -96.184419849593, -102.01709540787, -99.728735187547,
-96.163233028048, -99.772547164798, -99.706399753853, -93.024204617071,
-92.745813384859, -92.206884754512, -93.818508150122, -95.027018807793,
-100.87000577258, -98.467607232407, -95.005311380324, -102.04157607608,
-99.724619517, -93.022927803442, -92.404017215549, -92.204561341714,
-93.813803344588, -95.015606885523, -102.0157405687, -98.556982278361,
-96.172566862738, -103.21871579865, -99.714687230796, -93.022787428238,
-92.404017215549, -92.204274688493, -93.813803344588, -95.015606885523,
-102.0157405687, -98.556982278361, -96.172566862738, -103.21784988098,
-99.714687230796, -93.021813165972, -92.409950613665, -92.20229160243,
-93.805838770576, -96.184419849593, -102.02042267497, -99.728735187547,
-96.163233028048, -99.768774335378, -99.706399753853, -93.022228914406,
-92.411048503835, -92.203136463155, -93.807357409082, -95.012865008237,
-102.00985717796, -99.730352912911, -96.165675535906, -100.92744056572,
-99.708301333236, -92.735781110993, -92.408137395049, -92.119533319039,
-94.982938427575, -96.181073124017, -102.03018610927, -99.721633629806,
-97.32940323644, -97.347613268692, -100.87007386786), snr = c(49.848348091678,
57.698190927109, 60.17669971462, 41.529809724535, 31.452202106925,
8.1976890851341, 14.240447804094, 24.122884195464, 6.2202875499406,
10.674183333671, 49.848348091678, 57.746270018264, 60.17669971462,
41.529809724535, 31.452202106925, 8.1976890851341, 14.242292077376,
24.122884195464, 6.2202875499406, 10.672962852322, 49.854827699773,
57.49079026127, 60.192705735317, 41.549715223147, 31.499301851462,
6.2853718719014, 13.937702343688, 24.133388256416, 6.2028757927148,
10.677815810561, 49.867624820879, 57.417115267867, 60.224172277442,
41.635752021705, 24.074540962859, 6.2847854917092, 10.644529778044,
24.19227425387, 10.537686730745, 10.699414795917, 49.84017267426,
53.139646558768, 60.160512118809, 41.509660845114, 31.42665220053,
8.1846370024428, 14.231126423354, 31.584125885363, 6.2494585568733,
10.654622041348, 49.854827699773, 57.49079026127, 60.192705735317,
41.55465351989, 31.509340361646, 6.2867464196657, 13.941251828322,
24.140336174865, 4.765718874642, 10.679016976694, 49.856439162736,
57.49079026127, 60.196678846453, 41.55465351989, 31.509340361646,
6.2867464196657, 13.941251828322, 24.140336174865, 4.7666691818074,
10.679016976694, 49.867624820879, 57.412299088098, 60.224172277442,
41.630930975211, 24.074540962859, 6.279972363168, 10.644529778044,
24.19227425387, 10.546845071479, 10.699414795917, 49.862851240855,
57.397787176282, 60.212457625018, 41.61637603957, 31.529239767749,
6.2952688513108, 10.640565481982, 24.178672145334, 8.0771089950663,
10.694731030907, 53.262541905639, 57.43627424514, 61.382796189332,
31.747253311549, 24.093100244121, 6.2658701281075, 10.661949889074,
18.495227442305, 18.417839037171, 8.1845086722809), frameId = c(15051,
15106, 15165, 15220, 15279, 15330, 15385, 15452, 15511, 15566,
15019, 15074, 15129, 15184, 15239, 15298, 15353, 15412, 15471,
15526, 14947, 14994, 15057, 15112, 15171, 15226, 15281, 15332,
15391, 15442, 14971, 15030, 15085, 15144, 15203, 15262, 15321,
15380, 15435, 15490, 14915, 14978, 15033, 15092, 15147, 15198,
15257, 15312, 15371, 15430, 14975, 15034, 15089, 15140, 15195,
15254, 15313, 15368, 15427, 15478, 14987, 15046, 15105, 15160,
15215, 15274, 15329, 15384, 15447, 15506, 14943, 15002, 15061,
15116, 15171, 15230, 15285, 15344, 15399, 15454, 14971, 15026,
15081, 15136, 15195, 15258, 15313, 15368, 15423, 15478, 15039,
15094, 15149, 15204, 15263, 15314, 15369, 15428, 15487, 15546
), packetOkSinr = c(0.99999999314881, 0.9999999998736, 0.99999999996428,
0.99999952114066, 0.99991568416005, 3.00628034688444e-08,
0.51497487795954, 0.99627877136019, 0, 0.011303253101957,
0.99999999314881, 0.99999999987726, 0.99999999996428, 0.99999952114066,
0.99991568416005, 3.00628034688444e-08, 0.51530974419663,
0.99627877136019, 0, 0.011269851265775, 0.9999999931708,
0.99999999985986, 0.99999999996428, 0.99999952599145, 0.99991770469509,
0, 0.45861812482641, 0.99629897628155, 0, 0.011403119534097,
0.99999999321568, 0.99999999985437, 0.99999999996519, 0.99999954639936,
0.99618434878558, 0, 0.010513119213425, 0.99641022914441,
0.00801687746446111, 0.012011103529927, 0.9999999931195,
0.99999999871861, 0.99999999996428, 0.99999951617905, 0.99991456738049,
2.6525298291169e-08, 0.51328066587104, 0.9999212220316, 0,
0.010777054258914, 0.9999999931708, 0.99999999985986, 0.99999999996428,
0.99999952718674, 0.99991812902805, 0, 0.45929307038653,
0.99631228046814, 0, 0.011436292559188, 0.99999999317629,
0.99999999985986, 0.99999999996428, 0.99999952718674, 0.99991812902805,
0, 0.45929307038653, 0.99631228046814, 0, 0.011436292559188,
0.99999999321568, 0.99999999985437, 0.99999999996519, 0.99999954527918,
0.99618434878558, 0, 0.010513119213425, 0.99641022914441,
0.00821047996950475, 0.012011103529927, 0.99999999319919,
0.99999999985345, 0.99999999996519, 0.99999954188106, 0.99991896371849,
0, 0.010410830482692, 0.996384831822, 9.12484388049251e-09,
0.011877185067536, 0.99999999879646, 0.9999999998562, 0.99999999998077,
0.99992756868677, 0.9962208785486, 0, 0.010971897073662,
0.93214999078663, 0.92943956665979, 2.64925478221656e-08),
snir = c(49.848348091678, 57.698190927109, 60.17669971462,
41.529809724535, 31.452202106925, 8.1976890851341, 14.240447804094,
24.122884195464, 6.2202875499406, 10.674183333671, 49.848348091678,
57.746270018264, 60.17669971462, 41.529809724535, 31.452202106925,
8.1976890851341, 14.242292077376, 24.122884195464, 6.2202875499406,
10.672962852322, 49.854827699773, 57.49079026127, 60.192705735317,
41.549715223147, 31.499301851462, 6.2853718719014, 13.937702343688,
24.133388256416, 6.2028757927148, 10.677815810561, 49.867624820879,
57.417115267867, 60.224172277442, 41.635752021705, 24.074540962859,
6.2847854917092, 10.644529778044, 24.19227425387, 10.537686730745,
10.699414795917, 49.84017267426, 53.139646558768, 60.160512118809,
41.509660845114, 31.42665220053, 8.1846370024428, 14.231126423354,
31.584125885363, 6.2494585568733, 10.654622041348, 49.854827699773,
57.49079026127, 60.192705735317, 41.55465351989, 31.509340361646,
6.2867464196657, 13.941251828322, 24.140336174865, 4.765718874642,
10.679016976694, 49.856439162736, 57.49079026127, 60.196678846453,
41.55465351989, 31.509340361646, 6.2867464196657, 13.941251828322,
24.140336174865, 4.7666691818074, 10.679016976694, 49.867624820879,
57.412299088098, 60.224172277442, 41.630930975211, 24.074540962859,
6.279972363168, 10.644529778044, 24.19227425387, 10.546845071479,
10.699414795917, 49.862851240855, 57.397787176282, 60.212457625018,
41.61637603957, 31.529239767749, 6.2952688513108, 10.640565481982,
24.178672145334, 8.0771089950663, 10.694731030907, 53.262541905639,
57.43627424514, 61.382796189332, 31.747253311549, 24.093100244121,
6.2658701281075, 10.661949889074, 18.495227442305, 18.417839037171,
8.1845086722809), ookSnirBer = c(8.8808636558081e-24, 3.2219795637026e-27,
2.6468895519653e-28, 3.9807779074715e-20, 1.0849324265615e-15,
2.5705217057696e-05, 4.7313805615763e-08, 1.8800438086075e-12,
0.00021005320203921, 1.9147343768384e-06, 8.8808636558081e-24,
3.0694773489537e-27, 2.6468895519653e-28, 3.9807779074715e-20,
1.0849324265615e-15, 2.5705217057696e-05, 4.7223753038869e-08,
1.8800438086075e-12, 0.00021005320203921, 1.9171738578051e-06,
8.8229427230445e-24, 3.9715925056443e-27, 2.6045198111088e-28,
3.9014083702734e-20, 1.0342658440386e-15, 0.00019591630514278,
6.4692014108683e-08, 1.8600094209271e-12, 0.0002140067535655,
1.9074922485477e-06, 8.7096574467175e-24, 4.2779443633862e-27,
2.5231916788231e-28, 3.5761615214425e-20, 1.9750692814982e-12,
0.0001960392878411, 1.9748966344895e-06, 1.7515881895994e-12,
2.2078334799411e-06, 1.8649940680806e-06, 8.954486301678e-24,
3.2021085732779e-25, 2.690441113724e-28, 4.0627628846548e-20,
1.1134484878561e-15, 2.6061691733331e-05, 4.777159157954e-08,
9.4891388749738e-16, 0.00020359398491544, 1.9542110660398e-06,
8.8229427230445e-24, 3.9715925056443e-27, 2.6045198111088e-28,
3.8819641115984e-20, 1.0237769828158e-15, 0.00019562832342849,
6.4455095380046e-08, 1.8468752030971e-12, 0.0010099091367628,
1.9051035165106e-06, 8.8085966897635e-24, 3.9715925056443e-27,
2.594108048185e-28, 3.8819641115984e-20, 1.0237769828158e-15,
0.00019562832342849, 6.4455095380046e-08, 1.8468752030971e-12,
0.0010088638355194, 1.9051035165106e-06, 8.7096574467175e-24,
4.2987746909572e-27, 2.5231916788231e-28, 3.593647329558e-20,
1.9750692814982e-12, 0.00019705170257492, 1.9748966344895e-06,
1.7515881895994e-12, 2.1868296425817e-06, 1.8649940680806e-06,
8.7517439682173e-24, 4.3621551072316e-27, 2.553168170837e-28,
3.6469582463164e-20, 1.0032983660212e-15, 0.00019385229409318,
1.9830820164805e-06, 1.7760568361323e-12, 2.919419915209e-05,
1.8741284335866e-06, 2.8285944348148e-25, 4.1960751547207e-27,
7.8468215407139e-29, 8.0407329049747e-16, 1.9380328071065e-12,
0.00020004849911333, 1.9393279417733e-06, 5.9354475879597e-10,
6.4258355913627e-10, 2.6065221215415e-05), ookSnrBer = c(8.8808636558081e-24,
3.2219795637026e-27, 2.6468895519653e-28, 3.9807779074715e-20,
1.0849324265615e-15, 2.5705217057696e-05, 4.7313805615763e-08,
1.8800438086075e-12, 0.00021005320203921, 1.9147343768384e-06,
8.8808636558081e-24, 3.0694773489537e-27, 2.6468895519653e-28,
3.9807779074715e-20, 1.0849324265615e-15, 2.5705217057696e-05,
4.7223753038869e-08, 1.8800438086075e-12, 0.00021005320203921,
1.9171738578051e-06, 8.8229427230445e-24, 3.9715925056443e-27,
2.6045198111088e-28, 3.9014083702734e-20, 1.0342658440386e-15,
0.00019591630514278, 6.4692014108683e-08, 1.8600094209271e-12,
0.0002140067535655, 1.9074922485477e-06, 8.7096574467175e-24,
4.2779443633862e-27, 2.5231916788231e-28, 3.5761615214425e-20,
1.9750692814982e-12, 0.0001960392878411, 1.9748966344895e-06,
1.7515881895994e-12, 2.2078334799411e-06, 1.8649940680806e-06,
8.954486301678e-24, 3.2021085732779e-25, 2.690441113724e-28,
4.0627628846548e-20, 1.1134484878561e-15, 2.6061691733331e-05,
4.777159157954e-08, 9.4891388749738e-16, 0.00020359398491544,
1.9542110660398e-06, 8.8229427230445e-24, 3.9715925056443e-27,
2.6045198111088e-28, 3.8819641115984e-20, 1.0237769828158e-15,
0.00019562832342849, 6.4455095380046e-08, 1.8468752030971e-12,
0.0010099091367628, 1.9051035165106e-06, 8.8085966897635e-24,
3.9715925056443e-27, 2.594108048185e-28, 3.8819641115984e-20,
1.0237769828158e-15, 0.00019562832342849, 6.4455095380046e-08,
1.8468752030971e-12, 0.0010088638355194, 1.9051035165106e-06,
8.7096574467175e-24, 4.2987746909572e-27, 2.5231916788231e-28,
3.593647329558e-20, 1.9750692814982e-12, 0.00019705170257492,
1.9748966344895e-06, 1.7515881895994e-12, 2.1868296425817e-06,
1.8649940680806e-06, 8.7517439682173e-24, 4.3621551072316e-27,
2.553168170837e-28, 3.6469582463164e-20, 1.0032983660212e-15,
0.00019385229409318, 1.9830820164805e-06, 1.7760568361323e-12,
2.919419915209e-05, 1.8741284335866e-06, 2.8285944348148e-25,
4.1960751547207e-27, 7.8468215407139e-29, 8.0407329049747e-16,
1.9380328071065e-12, 0.00020004849911333, 1.9393279417733e-06,
5.9354475879597e-10, 6.4258355913627e-10, 2.6065221215415e-05
)), class = "data.frame", row.names = c(NA, -100L), .Names = c("run",
"repetition", "module", "configname", "packetByteLength", "numVehicles",
"dDistance", "time", "distanceToTx", "headerNoError", "receivedPower_dbm",
"snr", "frameId", "packetOkSinr", "snir", "ookSnirBer", "ookSnrBer"
))
求变换函数
Y1 -> y2 该函数用于将次要y轴的数据按照第一个y轴进行“归一化”
变换函数:f(y1) = 0.025*x + 2.75
Y2 -> y1 该函数用于将第一个y轴的断点转换为第二个y轴的值。注意,现在坐标轴互换了。
变换函数:f(y1) = 40*x - 110
策划
注意如何在ggplot调用中使用转换函数来“动态地”转换数据
ggplot(data=combined_80_8192 %>% filter (time > 270, time < 280), aes(x=time) ) +
stat_summary(aes(y=receivedPower_dbm ), fun.y=mean, geom="line", colour="black") +
stat_summary(aes(y=packetOkSinr*40 - 110 ), fun.y=mean, geom="line", colour="black", position = position_dodge(width=10)) +
scale_x_continuous() +
scale_y_continuous(breaks = seq(-0,-110,-10), "y_first", sec.axis=sec_axis(~.*0.025+2.75, name="y_second") )
第一个stat_summary调用是为第一个y轴设置基数的调用。 第二个stat_summary调用用于转换数据。请记住,所有数据将以第一个y轴为基础。第一个y轴的数据需要标准化。为此,我使用数据上的转换函数:y=packetOkSinr*40 - 110
现在要转换第二个轴,我在scale_y_continuous调用中使用相反的函数:sec.axis=sec_axis(~.*0.025+2.75, name="y_second")。
Kohske大约在3年前提供了解决这一挑战的技术骨干。在Stackoverflow [id: 18989001, 29235405, 21026598]的几个实例中已经讨论过这个主题及其解决方案的技术细节。因此,我将只提供一个特定的变化和一些解释性演练,使用上述解决方案。
让我们假设我们确实在组G1中有一些数据y1,而组G2中的一些数据y2以某种方式相关,例如范围/比例转换或添加了一些噪声。我们想把数据画在一张图上,左边是y1右边是y2。
df <- data.frame(item=LETTERS[1:n], y1=c(-0.8684, 4.2242, -0.3181, 0.5797, -0.4875), y2=c(-5.719, 205.184, 4.781, 41.952, 9.911 )) # made up!
> df
item y1 y2
1 A -0.8684 -19.154567
2 B 4.2242 219.092499
3 C -0.3181 18.849686
4 D 0.5797 46.945161
5 E -0.4875 -4.721973
如果我们现在把数据画在一起
ggplot(data=df, aes(label=item)) +
theme_bw() +
geom_segment(aes(x='G1', xend='G2', y=y1, yend=y2), color='grey')+
geom_text(aes(x='G1', y=y1), color='blue') +
geom_text(aes(x='G2', y=y2), color='red') +
theme(legend.position='none', panel.grid=element_blank())
它并没有很好地对齐,因为小尺度y1明显被大尺度y2折叠了。
这里应对挑战的技巧是在技术上根据第一个尺度y1绘制两个数据集,但根据二级轴报告第二个数据集,并使用标签显示原始尺度y2。
因此,我们构建了第一个辅助函数CalcFudgeAxis,它计算并收集要显示的新轴的特征。这个函数可以被修改成任意的形式(这个函数只是将y2映射到y1的范围上)。
CalcFudgeAxis = function( y1, y2=y1) {
Cast2To1 = function(x) ((ylim1[2]-ylim1[1])/(ylim2[2]-ylim2[1])*x) # x gets mapped to range of ylim2
ylim1 <- c(min(y1),max(y1))
ylim2 <- c(min(y2),max(y2))
yf <- Cast2To1(y2)
labelsyf <- pretty(y2)
return(list(
yf=yf,
labels=labelsyf,
breaks=Cast2To1(labelsyf)
))
}
什么产生了一些:
> FudgeAxis <- CalcFudgeAxis( df$y1, df$y2 )
> FudgeAxis
$yf
[1] -0.4094344 4.6831656 0.4029175 1.0034664 -0.1009335
$labels
[1] -50 0 50 100 150 200 250
$breaks
[1] -1.068764 0.000000 1.068764 2.137529 3.206293 4.275058 5.343822
> cbind(df, FudgeAxis$yf)
item y1 y2 FudgeAxis$yf
1 A -0.8684 -19.154567 -0.4094344
2 B 4.2242 219.092499 4.6831656
3 C -0.3181 18.849686 0.4029175
4 D 0.5797 46.945161 1.0034664
5 E -0.4875 -4.721973 -0.1009335
现在我将Kohske的解决方案包装在第二个辅助函数PlotWithFudgeAxis中(我们将ggplot对象和新轴的辅助对象放入其中):
library(gtable)
library(grid)
PlotWithFudgeAxis = function( plot1, FudgeAxis) {
# based on: https://rpubs.com/kohske/dual_axis_in_ggplot2
plot2 <- plot1 + with(FudgeAxis, scale_y_continuous( breaks=breaks, labels=labels))
#extract gtable
g1<-ggplot_gtable(ggplot_build(plot1))
g2<-ggplot_gtable(ggplot_build(plot2))
#overlap the panel of the 2nd plot on that of the 1st plot
pp<-c(subset(g1$layout, name=="panel", se=t:r))
g<-gtable_add_grob(g1, g2$grobs[[which(g2$layout$name=="panel")]], pp$t, pp$l, pp$b,pp$l)
ia <- which(g2$layout$name == "axis-l")
ga <- g2$grobs[[ia]]
ax <- ga$children[[2]]
ax$widths <- rev(ax$widths)
ax$grobs <- rev(ax$grobs)
ax$grobs[[1]]$x <- ax$grobs[[1]]$x - unit(1, "npc") + unit(0.15, "cm")
g <- gtable_add_cols(g, g2$widths[g2$layout[ia, ]$l], length(g$widths) - 1)
g <- gtable_add_grob(g, ax, pp$t, length(g$widths) - 1, pp$b)
grid.draw(g)
}
现在可以将所有内容放在一起:下面的代码显示了建议的解决方案如何在日常环境中使用。plot调用现在不再绘制原始数据y2,而是一个克隆版本yf(保存在预先计算的辅助对象FudgeAxis中),它以y1的规模运行。然后使用Kohske的辅助函数PlotWithFudgeAxis操作原始ggplot对象,以添加第二个轴,保留y2的刻度。它的情节和被操纵的情节一样。
FudgeAxis <- CalcFudgeAxis( df$y1, df$y2 )
tmpPlot <- ggplot(data=df, aes(label=item)) +
theme_bw() +
geom_segment(aes(x='G1', xend='G2', y=y1, yend=FudgeAxis$yf), color='grey')+
geom_text(aes(x='G1', y=y1), color='blue') +
geom_text(aes(x='G2', y=FudgeAxis$yf), color='red') +
theme(legend.position='none', panel.grid=element_blank())
PlotWithFudgeAxis(tmpPlot, FudgeAxis)
现在它有两个轴,左边是y1右边是y2
Above solution is, to put it straight, a limited shaky hack. As it plays with the ggplot kernel it will throw some warnings that we exchange post-the-fact scales, etc. It has to be handled with care and may produce some undesired behaviour in another setting. As well one may need to fiddle around with the helper functions to get the layout as desired. The placement of the legend is such an issue (it would be placed between the panel and the new axis; this is why I droped it). The scaling / alignment of the 2 axis is as well a bit challenging: The code above works nicely when both scales contain the "0", else one axis gets shifted. So definetly with some opportunities to improve...
如果on想要保存图片,就必须将调用包装成设备打开/关闭:
png(...)
PlotWithFudgeAxis(tmpPlot, FudgeAxis)
dev.off()
根据上面的答案和一些微调(无论它有什么价值),这里有一种通过sec_axis实现两个尺度的方法:
假设有一个简单的(完全虚构的)数据集dt:在五天的时间里,它追踪了被打断的次数VS工作效率:
when numinter prod
1 2018-03-20 1 0.95
2 2018-03-21 5 0.50
3 2018-03-23 4 0.70
4 2018-03-24 3 0.75
5 2018-03-25 4 0.60
(两列的范围相差大约5倍)。
下面的代码将画出它们占用整个y轴的两个级数:
ggplot() +
geom_bar(mapping = aes(x = dt$when, y = dt$numinter), stat = "identity", fill = "grey") +
geom_line(mapping = aes(x = dt$when, y = dt$prod*5), size = 2, color = "blue") +
scale_x_date(name = "Day", labels = NULL) +
scale_y_continuous(name = "Interruptions/day",
sec.axis = sec_axis(~./5, name = "Productivity % of best",
labels = function(b) { paste0(round(b * 100, 0), "%")})) +
theme(
axis.title.y = element_text(color = "grey"),
axis.title.y.right = element_text(color = "blue"))
下面是结果(上面的代码+一些颜色调整):
重点(除了在指定y_scale时使用sec_axis之外)是在指定系列时将第二个数据系列的每个值与5相乘。为了在sec_axis定义中获得正确的标签,它需要除以5(并格式化)。因此,上述代码中的关键部分实际上是geom_line和~中的*5。sec_axis中的/5(一个除当前值的公式。5)。
相比之下(我不想在这里判断方法),这是两个图表叠加在一起的样子:
你可以自己判断哪一个能更好地传递信息(“不要打扰别人工作!”)。我想这是一个公平的决定方式。
这两个图像的完整代码(实际上并没有比上面更多,只是完成并准备运行)在这里:https://gist.github.com/sebastianrothbucher/de847063f32fdff02c83b75f59c36a7d更详细的解释在这里:https://sebastianrothbucher.github.io/datascience/r/visualization/ggplot/2018/03/24/two-scales-ggplot-r.html
总有办法的。
这里有一个解决方案,允许完全任意轴而不重新缩放。其思想是生成两个除了轴以外完全相同的图,并使用cowplot包中的insert_yaxis_grob和get_y_axis函数将它们组合在一起。
library(ggplot2)
library(cowplot)
## first plot
p1 <- ggplot(mtcars,aes(disp,hp,color=as.factor(am))) +
geom_point() + theme_bw() + theme(legend.position='top', text=element_text(size=16)) +
ylab("Horse points" )+ xlab("Display size") + scale_color_discrete(name='Transmitter') +
stat_smooth(se=F)
## same plot with different, arbitrary scale
p2 <- p1 +
scale_y_continuous(position='right',breaks=seq(120,173,length.out = 3),
labels=c('little','medium little','medium hefty'))
ggdraw(insert_yaxis_grob(p1,get_y_axis(p2,position='right')))