我需要在一个图表中绘制一个显示计数的柱状图和一个显示率的折线图,我可以分别做这两个,但当我把它们放在一起时,我的第一层(即geom_bar)的比例被第二层(即geom_line)重叠。

我可以将geom_line的轴向右移动吗?


当前回答

这在ggplot2中是不可能的,因为我认为具有单独y尺度的图(不是相互转换的y尺度)从根本上是有缺陷的。一些问题:

The are not invertible: given a point on the plot space, you can not uniquely map it back to a point in the data space. They are relatively hard to read correctly compared to other options. See A Study on Dual-Scale Data Charts by Petra Isenberg, Anastasia Bezerianos, Pierre Dragicevic, and Jean-Daniel Fekete for details. They are easily manipulated to mislead: there is no unique way to specify the relative scales of the axes, leaving them open to manipulation. Two examples from the Junkcharts blog: one, two They are arbitrary: why have only 2 scales, not 3, 4 or ten?

你也可能想要阅读Stephen Few关于双缩放轴在图形中的主题的冗长讨论,它们是最好的解决方案吗?

其他回答

有时客户想要两个y刻度。给他们“有缺陷”的演讲通常是毫无意义的。但是我喜欢ggplot2坚持以正确的方式做事。我确信ggplot实际上是在向普通用户传授正确的可视化技术。

也许你可以使用面形和无比例来比较两个数据序列?看这里:https://github.com/hadley/ggplot2/wiki/Align-two-plots-on-a-page

Kohske大约在3年前提供了解决这一挑战的技术骨干。在Stackoverflow [id: 18989001, 29235405, 21026598]的几个实例中已经讨论过这个主题及其解决方案的技术细节。因此,我将只提供一个特定的变化和一些解释性演练,使用上述解决方案。

让我们假设我们确实在组G1中有一些数据y1,而组G2中的一些数据y2以某种方式相关,例如范围/比例转换或添加了一些噪声。我们想把数据画在一张图上,左边是y1右边是y2。

  df <- data.frame(item=LETTERS[1:n],  y1=c(-0.8684, 4.2242, -0.3181, 0.5797, -0.4875), y2=c(-5.719, 205.184, 4.781, 41.952, 9.911 )) # made up!

> df
  item      y1         y2
1    A -0.8684 -19.154567
2    B  4.2242 219.092499
3    C -0.3181  18.849686
4    D  0.5797  46.945161
5    E -0.4875  -4.721973

如果我们现在把数据画在一起

ggplot(data=df, aes(label=item)) +
  theme_bw() + 
  geom_segment(aes(x='G1', xend='G2', y=y1, yend=y2), color='grey')+
  geom_text(aes(x='G1', y=y1), color='blue') +
  geom_text(aes(x='G2', y=y2), color='red') +
  theme(legend.position='none', panel.grid=element_blank())

它并没有很好地对齐,因为小尺度y1明显被大尺度y2折叠了。

这里应对挑战的技巧是在技术上根据第一个尺度y1绘制两个数据集,但根据二级轴报告第二个数据集,并使用标签显示原始尺度y2。

因此,我们构建了第一个辅助函数CalcFudgeAxis,它计算并收集要显示的新轴的特征。这个函数可以被修改成任意的形式(这个函数只是将y2映射到y1的范围上)。

CalcFudgeAxis = function( y1, y2=y1) {
  Cast2To1 = function(x) ((ylim1[2]-ylim1[1])/(ylim2[2]-ylim2[1])*x) # x gets mapped to range of ylim2
  ylim1 <- c(min(y1),max(y1))
  ylim2 <- c(min(y2),max(y2))    
  yf <- Cast2To1(y2)
  labelsyf <- pretty(y2)  
  return(list(
    yf=yf,
    labels=labelsyf,
    breaks=Cast2To1(labelsyf)
  ))
}

什么产生了一些:

> FudgeAxis <- CalcFudgeAxis( df$y1, df$y2 )

> FudgeAxis
$yf
[1] -0.4094344  4.6831656  0.4029175  1.0034664 -0.1009335

$labels
[1] -50   0  50 100 150 200 250

$breaks
[1] -1.068764  0.000000  1.068764  2.137529  3.206293  4.275058  5.343822


> cbind(df, FudgeAxis$yf)
  item      y1         y2 FudgeAxis$yf
1    A -0.8684 -19.154567   -0.4094344
2    B  4.2242 219.092499    4.6831656
3    C -0.3181  18.849686    0.4029175
4    D  0.5797  46.945161    1.0034664
5    E -0.4875  -4.721973   -0.1009335

现在我将Kohske的解决方案包装在第二个辅助函数PlotWithFudgeAxis中(我们将ggplot对象和新轴的辅助对象放入其中):

library(gtable)
library(grid)

PlotWithFudgeAxis = function( plot1, FudgeAxis) {
  # based on: https://rpubs.com/kohske/dual_axis_in_ggplot2
  plot2 <- plot1 + with(FudgeAxis, scale_y_continuous( breaks=breaks, labels=labels))

  #extract gtable
  g1<-ggplot_gtable(ggplot_build(plot1))
  g2<-ggplot_gtable(ggplot_build(plot2))

  #overlap the panel of the 2nd plot on that of the 1st plot
  pp<-c(subset(g1$layout, name=="panel", se=t:r))
  g<-gtable_add_grob(g1, g2$grobs[[which(g2$layout$name=="panel")]], pp$t, pp$l, pp$b,pp$l)

  ia <- which(g2$layout$name == "axis-l")
  ga <- g2$grobs[[ia]]
  ax <- ga$children[[2]]
  ax$widths <- rev(ax$widths)
  ax$grobs <- rev(ax$grobs)
  ax$grobs[[1]]$x <- ax$grobs[[1]]$x - unit(1, "npc") + unit(0.15, "cm")
  g <- gtable_add_cols(g, g2$widths[g2$layout[ia, ]$l], length(g$widths) - 1)
  g <- gtable_add_grob(g, ax, pp$t, length(g$widths) - 1, pp$b)

  grid.draw(g)
}

现在可以将所有内容放在一起:下面的代码显示了建议的解决方案如何在日常环境中使用。plot调用现在不再绘制原始数据y2,而是一个克隆版本yf(保存在预先计算的辅助对象FudgeAxis中),它以y1的规模运行。然后使用Kohske的辅助函数PlotWithFudgeAxis操作原始ggplot对象,以添加第二个轴,保留y2的刻度。它的情节和被操纵的情节一样。

FudgeAxis <- CalcFudgeAxis( df$y1, df$y2 )

tmpPlot <- ggplot(data=df, aes(label=item)) +
      theme_bw() + 
      geom_segment(aes(x='G1', xend='G2', y=y1, yend=FudgeAxis$yf), color='grey')+
      geom_text(aes(x='G1', y=y1), color='blue') +
      geom_text(aes(x='G2', y=FudgeAxis$yf), color='red') +
      theme(legend.position='none', panel.grid=element_blank())

PlotWithFudgeAxis(tmpPlot, FudgeAxis)

现在它有两个轴,左边是y1右边是y2

Above solution is, to put it straight, a limited shaky hack. As it plays with the ggplot kernel it will throw some warnings that we exchange post-the-fact scales, etc. It has to be handled with care and may produce some undesired behaviour in another setting. As well one may need to fiddle around with the helper functions to get the layout as desired. The placement of the legend is such an issue (it would be placed between the panel and the new axis; this is why I droped it). The scaling / alignment of the 2 axis is as well a bit challenging: The code above works nicely when both scales contain the "0", else one axis gets shifted. So definetly with some opportunities to improve...

如果on想要保存图片,就必须将调用包装成设备打开/关闭:

png(...)
PlotWithFudgeAxis(tmpPlot, FudgeAxis)
dev.off()

我们当然可以用R函数图来建立一个双y轴的图。

# pseudo dataset
df <- data.frame(x = seq(1, 1000, 1), y1 = sample.int(100, 1000, replace=T), y2 = sample(50, 1000, replace = T))

# plot first plot 
with(df, plot(y1 ~ x, col = "red"))

# set new plot
par(new = T) 

# plot second plot, but without axis
with(df, plot(y2 ~ x, type = "l", xaxt = "n", yaxt = "n", xlab = "", ylab = ""))

# define y-axis and put y-labs
axis(4)
with(df, mtext("y2", side = 4))

下面的文章帮助我将ggplot2生成的两个图合并到单行上:

一页上的多个图(ggplot2)由Cookbook for R

下面是代码在这种情况下的样子:

p1 <- 
  ggplot() + aes(mns)+ geom_histogram(aes(y=..density..), binwidth=0.01, colour="black", fill="white") + geom_vline(aes(xintercept=mean(mns, na.rm=T)), color="red", linetype="dashed", size=1) +  geom_density(alpha=.2)

p2 <- 
  ggplot() + aes(mns)+ geom_histogram( binwidth=0.01, colour="black", fill="white") + geom_vline(aes(xintercept=mean(mns, na.rm=T)), color="red", linetype="dashed", size=1)  

multiplot(p1,p2,cols=2)

总有办法的。

这里有一个解决方案,允许完全任意轴而不重新缩放。其思想是生成两个除了轴以外完全相同的图,并使用cowplot包中的insert_yaxis_grob和get_y_axis函数将它们组合在一起。

library(ggplot2)
library(cowplot)

## first plot 
p1 <- ggplot(mtcars,aes(disp,hp,color=as.factor(am))) + 
    geom_point() + theme_bw() + theme(legend.position='top', text=element_text(size=16)) +
    ylab("Horse points" )+ xlab("Display size") + scale_color_discrete(name='Transmitter') +
    stat_smooth(se=F)

## same plot with different, arbitrary scale   
p2 <- p1 +
    scale_y_continuous(position='right',breaks=seq(120,173,length.out = 3),
                       labels=c('little','medium little','medium hefty'))

ggdraw(insert_yaxis_grob(p1,get_y_axis(p2,position='right')))