如何从df中选择列a和b,并将它们保存到新的数据帧df1中?
index a b c
1 2 3 4
2 3 4 5
尝试失败:
df1 = df['a':'b']
df1 = df.ix[:, 'a':'b']
如何从df中选择列a和b,并将它们保存到新的数据帧df1中?
index a b c
1 2 3 4
2 3 4 5
尝试失败:
df1 = df['a':'b']
df1 = df.ix[:, 'a':'b']
当前回答
In [39]: df
Out[39]:
index a b c
0 1 2 3 4
1 2 3 4 5
In [40]: df1 = df[['b', 'c']]
In [41]: df1
Out[41]:
b c
0 3 4
1 4 5
其他回答
如果要按行索引和列名获取一个元素,可以像df['b'][0]一样执行。这就像你能想象的那样简单。
或者可以使用df.ix[0,'b']-索引和标签的混合用法。
注意:从v0.20开始,ix已被弃用,取而代之的是loc/iloc。
列名(字符串)无法按您尝试的方式进行切片。
这里有两个选项。如果您从上下文中知道要分割哪些变量,只需通过将列表传递到__getitem_语法([])中,即可返回这些列的视图。
df1 = df[['a', 'b']]
或者,如果重要的是对它们进行数字索引,而不是按它们的名称进行索引(假设您的代码应该在不知道前两列的名称的情况下自动进行索引),那么您可以改为这样做:
df1 = df.iloc[:, 0:2] # Remember that Python does not slice inclusive of the ending index.
此外,您应该熟悉Pandas对象视图与该对象副本的概念。上述第一个方法将在内存中返回所需子对象(所需切片)的新副本。
然而,有时Pandas中有一些索引约定不这样做,而是给你一个新变量,它只引用与原始对象中的子对象或切片相同的内存块。这将发生在第二种索引方式中,因此您可以使用.copy()方法对其进行修改以获得常规副本。当发生这种情况时,更改您认为的切片对象有时会更改原始对象。时刻注意这一点总是很好的。
df1 = df.iloc[0, 0:2].copy() # To avoid the case where changing df1 also changes df
要使用iloc,您需要知道列位置(或索引)。由于列位置可能会改变,您可以使用iloc和dataframe对象的columns方法的get_loc函数来获取列索引,而不是硬编码索引。
{df.columns.get_loc(c): c for idx, c in enumerate(df.columns)}
现在,您可以使用此字典通过名称和iloc访问列。
我已经看到了几个答案,但其中一个仍然不清楚。你会如何选择那些感兴趣的专栏?
答案是,如果您将它们收集在列表中,则可以使用列表引用列。
实例
print(extracted_features.shape)
print(extracted_features)
(63,)
['f000004' 'f000005' 'f000006' 'f000014' 'f000039' 'f000040' 'f000043'
'f000047' 'f000048' 'f000049' 'f000050' 'f000051' 'f000052' 'f000053'
'f000054' 'f000055' 'f000056' 'f000057' 'f000058' 'f000059' 'f000060'
'f000061' 'f000062' 'f000063' 'f000064' 'f000065' 'f000066' 'f000067'
'f000068' 'f000069' 'f000070' 'f000071' 'f000072' 'f000073' 'f000074'
'f000075' 'f000076' 'f000077' 'f000078' 'f000079' 'f000080' 'f000081'
'f000082' 'f000083' 'f000084' 'f000085' 'f000086' 'f000087' 'f000088'
'f000089' 'f000090' 'f000091' 'f000092' 'f000093' 'f000094' 'f000095'
'f000096' 'f000097' 'f000098' 'f000099' 'f000100' 'f000101' 'f000103']
我有以下列表/NumPy数组extracted_features,指定了63列。原始数据集有103列,我想提取这些列,然后使用
dataset[extracted_features]
你最终会得到这个
这是你在机器学习中经常用到的东西(更具体地说,在特征选择中)。我也想讨论其他方式,但我认为其他Stack Overflower用户已经涵盖了这一点。
df[['a', 'b']] # Select all rows of 'a' and 'b'column
df.loc[0:10, ['a', 'b']] # Index 0 to 10 select column 'a' and 'b'
df.loc[0:10, 'a':'b'] # Index 0 to 10 select column 'a' to 'b'
df.iloc[0:10, 3:5] # Index 0 to 10 and column 3 to 5
df.iloc[3, 3:5] # Index 3 of column 3 to 5
尝试使用pandas.DataFrame.get(请参阅文档):
import pandas as pd
import numpy as np
dates = pd.date_range('20200102', periods=6)
df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD'))
df.get(['A', 'C'])