如何从df中选择列a和b,并将它们保存到新的数据帧df1中?
index a b c
1 2 3 4
2 3 4 5
尝试失败:
df1 = df['a':'b']
df1 = df.ix[:, 'a':'b']
如何从df中选择列a和b,并将它们保存到新的数据帧df1中?
index a b c
1 2 3 4
2 3 4 5
尝试失败:
df1 = df['a':'b']
df1 = df.ix[:, 'a':'b']
当前回答
对于Pandas,
具有列名称
dataframe[['column1','column2']]
要通过iloc和带有索引编号的特定列进行选择,请执行以下操作:
dataframe.iloc[:,[1,2]]
带有loc的列名可以使用如下
dataframe.loc[:,['column1','column2']]
其他回答
假设你的列名(df.columns)是['index','a','b','c'],那么你想要的数据就在第三列和第四列。如果脚本运行时不知道它们的名称,可以执行以下操作
newdf = df[df.columns[2:4]] # Remember, Python is zero-offset! The "third" entry is at slot two.
正如EMS在回答中所指出的,df.ix对列进行了更简洁的切片,但.columns切片接口可能更自然,因为它使用了普通的一维Python列表索引/切片语法。
警告:“index”是DataFrame列的错误名称。同一标签也用于实际df.index属性,即index数组。因此,您的列由df['index']返回,而真正的DataFrame索引由df.index返回。index是一种特殊的系列,优化用于查找其元素值。对于df.index,它用于按标签查找行。df.columns属性也是一个pd.Index数组,用于按标签查找列。
从0.21.0开始,在列表中使用.loc或[](其中包含一个或多个缺失的标签)是不推荐使用.reindex的。因此,问题的答案是:
df1 = df.reindex(columns=['b','c'])
在以前的版本中,只要找到至少一个键,就可以使用.loc〔标签列表〕(否则会引发KeyError)。此行为已弃用,现在显示警告消息。建议使用.reindex()。
阅读更多关于索引和选择数据的信息。
对于Pandas,
具有列名称
dataframe[['column1','column2']]
要通过iloc和带有索引编号的特定列进行选择,请执行以下操作:
dataframe.iloc[:,[1,2]]
带有loc的列名可以使用如下
dataframe.loc[:,['column1','column2']]
In [39]: df
Out[39]:
index a b c
0 1 2 3 4
1 2 3 4 5
In [40]: df1 = df[['b', 'c']]
In [41]: df1
Out[41]:
b c
0 3 4
1 4 5
df[['a', 'b']] # Select all rows of 'a' and 'b'column
df.loc[0:10, ['a', 'b']] # Index 0 to 10 select column 'a' and 'b'
df.loc[0:10, 'a':'b'] # Index 0 to 10 select column 'a' to 'b'
df.iloc[0:10, 3:5] # Index 0 to 10 and column 3 to 5
df.iloc[3, 3:5] # Index 3 of column 3 to 5