如何从df中选择列a和b,并将它们保存到新的数据帧df1中?

index  a   b   c
1      2   3   4
2      3   4   5

尝试失败:

df1 = df['a':'b']
df1 = df.ix[:, 'a':'b']

当前回答

对于Pandas,

具有列名称

dataframe[['column1','column2']]

要通过iloc和带有索引编号的特定列进行选择,请执行以下操作:

dataframe.iloc[:,[1,2]]

带有loc的列名可以使用如下

dataframe.loc[:,['column1','column2']]

其他回答

如果要按行索引和列名获取一个元素,可以像df['b'][0]一样执行。这就像你能想象的那样简单。

或者可以使用df.ix[0,'b']-索引和标签的混合用法。

注意:从v0.20开始,ix已被弃用,取而代之的是loc/iloc。

我已经看到了几个答案,但其中一个仍然不清楚。你会如何选择那些感兴趣的专栏?

答案是,如果您将它们收集在列表中,则可以使用列表引用列。

实例

print(extracted_features.shape)
print(extracted_features)

(63,)
['f000004' 'f000005' 'f000006' 'f000014' 'f000039' 'f000040' 'f000043'
 'f000047' 'f000048' 'f000049' 'f000050' 'f000051' 'f000052' 'f000053'
 'f000054' 'f000055' 'f000056' 'f000057' 'f000058' 'f000059' 'f000060'
 'f000061' 'f000062' 'f000063' 'f000064' 'f000065' 'f000066' 'f000067'
 'f000068' 'f000069' 'f000070' 'f000071' 'f000072' 'f000073' 'f000074'
 'f000075' 'f000076' 'f000077' 'f000078' 'f000079' 'f000080' 'f000081'
 'f000082' 'f000083' 'f000084' 'f000085' 'f000086' 'f000087' 'f000088'
 'f000089' 'f000090' 'f000091' 'f000092' 'f000093' 'f000094' 'f000095'
 'f000096' 'f000097' 'f000098' 'f000099' 'f000100' 'f000101' 'f000103']

我有以下列表/NumPy数组extracted_features,指定了63列。原始数据集有103列,我想提取这些列,然后使用

dataset[extracted_features]

你最终会得到这个

这是你在机器学习中经常用到的东西(更具体地说,在特征选择中)。我也想讨论其他方式,但我认为其他Stack Overflower用户已经涵盖了这一点。

您可以提供要删除的列的列表,并使用Pandas DataFrame上的drop()函数仅返回所需的列。

只是说说而已

colsToDrop = ['a']
df.drop(colsToDrop, axis=1)

将返回仅包含列b和c的DataFrame。

此处记录了drop方法。

对于Pandas,

具有列名称

dataframe[['column1','column2']]

要通过iloc和带有索引编号的特定列进行选择,请执行以下操作:

dataframe.iloc[:,[1,2]]

带有loc的列名可以使用如下

dataframe.loc[:,['column1','column2']]

尝试使用pandas.DataFrame.get(请参阅文档):

import pandas as pd
import numpy as np

dates = pd.date_range('20200102', periods=6)
df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD'))
df.get(['A', 'C'])