如何从df中选择列a和b,并将它们保存到新的数据帧df1中?

index  a   b   c
1      2   3   4
2      3   4   5

尝试失败:

df1 = df['a':'b']
df1 = df.ix[:, 'a':'b']

当前回答

也可以使用df.pop():

>>> df = pd.DataFrame([('falcon', 'bird',    389.0),
...                    ('parrot', 'bird',     24.0),
...                    ('lion',   'mammal',   80.5),
...                    ('monkey', 'mammal', np.nan)],
...                   columns=('name', 'class', 'max_speed'))
>>> df
     name   class  max_speed
0  falcon    bird      389.0
1  parrot    bird       24.0
2    lion  mammal       80.5
3  monkey  mammal

>>> df.pop('class')
0      bird
1      bird
2    mammal
3    mammal
Name: class, dtype: object

>>> df
     name  max_speed
0  falcon      389.0
1  parrot       24.0
2    lion       80.5
3  monkey        NaN

请使用df.pop(c)。

其他回答

在最新版本的Pandas中,有一种简单的方法可以做到这一点。列名(字符串)可以按您喜欢的方式进行切片。

columns = ['b', 'c']
df1 = pd.DataFrame(df, columns=columns)

我发现这种方法非常有用:

# iloc[row slicing, column slicing]
surveys_df.iloc [0:3, 1:4]

更多详情请点击此处。

我认为这是实现目标的最简单方法。

熊猫作为pd进口列=[a','b']df1=pd.DataFrame(df,columns=cols)df1=df.iloc[:,0:2]

如果要按行索引和列名获取一个元素,可以像df['b'][0]一样执行。这就像你能想象的那样简单。

或者可以使用df.ix[0,'b']-索引和标签的混合用法。

注意:从v0.20开始,ix已被弃用,取而代之的是loc/iloc。

你可以使用熊猫。

我创建DataFrame:

import pandas as pd
df = pd.DataFrame([[1, 2,5], [5,4, 5], [7,7, 8], [7,6,9]],
                  index=['Jane', 'Peter','Alex','Ann'],
                  columns=['Test_1', 'Test_2', 'Test_3'])

数据帧:

       Test_1  Test_2  Test_3
Jane        1       2       5
Peter       5       4       5
Alex        7       7       8
Ann         7       6       9

要按名称选择一个或多个列,请执行以下操作:

df[['Test_1', 'Test_3']]

       Test_1  Test_3
Jane        1       5
Peter       5       5
Alex        7       8
Ann         7       9

您还可以使用:

df.Test_2

然后得到Test_2列:

Jane     2
Peter    4
Alex     7
Ann      6

您还可以使用.loc()从这些行中选择列和行。这称为“切片”。请注意,我从列Test_1到Test_3:

df.loc[:, 'Test_1':'Test_3']

“切片”是:

       Test_1  Test_2  Test_3
Jane        1       2       5
Peter       5       4       5
Alex        7       7       8
Ann         7       6       9

如果你只想让Peter和Ann在Test_1和Test_3列中:

df.loc[['Peter', 'Ann'], ['Test_1', 'Test_3']]

你得到:

       Test_1  Test_3
Peter       5       5
Ann         7       9