如何从df中选择列a和b,并将它们保存到新的数据帧df1中?

index  a   b   c
1      2   3   4
2      3   4   5

尝试失败:

df1 = df['a':'b']
df1 = df.ix[:, 'a':'b']

当前回答

若要排除某些列,可以将它们放在列索引中。例如:

   A   B    C     D
0  1  10  100  1000
1  2  20  200  2000

选择除两个以外的所有选项:

df[df.columns.drop(['B', 'D'])]

输出:

   A    C
0  1  100
1  2  200

也可以使用truncate方法选择中间列:

df.truncate(before='B', after='C', axis=1)

输出:

    B    C
0  10  100
1  20  200

其他回答

在最新版本的Pandas中,有一种简单的方法可以做到这一点。列名(字符串)可以按您喜欢的方式进行切片。

columns = ['b', 'c']
df1 = pd.DataFrame(df, columns=columns)

您可以提供要删除的列的列表,并使用Pandas DataFrame上的drop()函数仅返回所需的列。

只是说说而已

colsToDrop = ['a']
df.drop(colsToDrop, axis=1)

将返回仅包含列b和c的DataFrame。

此处记录了drop方法。

您可以使用pandas.DataFrame.filter方法对列进行筛选或重新排序,如下所示:

df1 = df.filter(['a', 'b'])

这在链接方法时也非常有用。

我认为这是实现目标的最简单方法。

熊猫作为pd进口列=[a','b']df1=pd.DataFrame(df,columns=cols)df1=df.iloc[:,0:2]

要选择多个列,请提取并查看它们:df是先前命名的数据帧。然后创建一个新的数据帧df1,并选择要提取和查看的列a到D。

df1 = pd.DataFrame(data_frame, columns=['Column A', 'Column B', 'Column C', 'Column D'])
df1

将显示所有必需的列!