如何从df中选择列a和b,并将它们保存到新的数据帧df1中?

index  a   b   c
1      2   3   4
2      3   4   5

尝试失败:

df1 = df['a':'b']
df1 = df.ix[:, 'a':'b']

当前回答

若要排除某些列,可以将它们放在列索引中。例如:

   A   B    C     D
0  1  10  100  1000
1  2  20  200  2000

选择除两个以外的所有选项:

df[df.columns.drop(['B', 'D'])]

输出:

   A    C
0  1  100
1  2  200

也可以使用truncate方法选择中间列:

df.truncate(before='B', after='C', axis=1)

输出:

    B    C
0  10  100
1  20  200

其他回答

前面的答案中讨论的不同方法基于这样的假设:用户知道要删除或子集的列索引,或者用户希望使用一系列列(例如“C”和“E”之间)来子集数据帧。

pandas.DataFrame.drop()当然是一个基于用户定义的列列表对数据进行子集的选项(尽管您必须谨慎地始终使用数据帧的副本,并且不应将就地参数设置为True!!)

另一个选项是使用pandas.columns.difference(),它对列名进行设置差异,并返回包含所需列的数组的索引类型。以下是解决方案:

df = pd.DataFrame([[2,3,4], [3,4,5]], columns=['a','b','c'], index=[1,2])
columns_for_differencing = ['a']
df1 = df.copy()[df.columns.difference(columns_for_differencing)]
print(df1)

输出将是:

    b   c
1   3   4
2   4   5

要选择多个列,请提取并查看它们:df是先前命名的数据帧。然后创建一个新的数据帧df1,并选择要提取和查看的列a到D。

df1 = pd.DataFrame(data_frame, columns=['Column A', 'Column B', 'Column C', 'Column D'])
df1

将显示所有必需的列!

从0.21.0开始,在列表中使用.loc或[](其中包含一个或多个缺失的标签)是不推荐使用.reindex的。因此,问题的答案是:

df1 = df.reindex(columns=['b','c'])

在以前的版本中,只要找到至少一个键,就可以使用.loc〔标签列表〕(否则会引发KeyError)。此行为已弃用,现在显示警告消息。建议使用.reindex()。

阅读更多关于索引和选择数据的信息。

在最新版本的Pandas中,有一种简单的方法可以做到这一点。列名(字符串)可以按您喜欢的方式进行切片。

columns = ['b', 'c']
df1 = pd.DataFrame(df, columns=columns)

对于Pandas,

具有列名称

dataframe[['column1','column2']]

要通过iloc和带有索引编号的特定列进行选择,请执行以下操作:

dataframe.iloc[:,[1,2]]

带有loc的列名可以使用如下

dataframe.loc[:,['column1','column2']]