如何从df中选择列a和b,并将它们保存到新的数据帧df1中?
index a b c
1 2 3 4
2 3 4 5
尝试失败:
df1 = df['a':'b']
df1 = df.ix[:, 'a':'b']
如何从df中选择列a和b,并将它们保存到新的数据帧df1中?
index a b c
1 2 3 4
2 3 4 5
尝试失败:
df1 = df['a':'b']
df1 = df.ix[:, 'a':'b']
当前回答
在最新版本的Pandas中,有一种简单的方法可以做到这一点。列名(字符串)可以按您喜欢的方式进行切片。
columns = ['b', 'c']
df1 = pd.DataFrame(df, columns=columns)
其他回答
您可以提供要删除的列的列表,并使用Pandas DataFrame上的drop()函数仅返回所需的列。
只是说说而已
colsToDrop = ['a']
df.drop(colsToDrop, axis=1)
将返回仅包含列b和c的DataFrame。
此处记录了drop方法。
你可以使用熊猫。
我创建DataFrame:
import pandas as pd
df = pd.DataFrame([[1, 2,5], [5,4, 5], [7,7, 8], [7,6,9]],
index=['Jane', 'Peter','Alex','Ann'],
columns=['Test_1', 'Test_2', 'Test_3'])
数据帧:
Test_1 Test_2 Test_3
Jane 1 2 5
Peter 5 4 5
Alex 7 7 8
Ann 7 6 9
要按名称选择一个或多个列,请执行以下操作:
df[['Test_1', 'Test_3']]
Test_1 Test_3
Jane 1 5
Peter 5 5
Alex 7 8
Ann 7 9
您还可以使用:
df.Test_2
然后得到Test_2列:
Jane 2
Peter 4
Alex 7
Ann 6
您还可以使用.loc()从这些行中选择列和行。这称为“切片”。请注意,我从列Test_1到Test_3:
df.loc[:, 'Test_1':'Test_3']
“切片”是:
Test_1 Test_2 Test_3
Jane 1 2 5
Peter 5 4 5
Alex 7 7 8
Ann 7 6 9
如果你只想让Peter和Ann在Test_1和Test_3列中:
df.loc[['Peter', 'Ann'], ['Test_1', 'Test_3']]
你得到:
Test_1 Test_3
Peter 5 5
Ann 7 9
从0.21.0开始,在列表中使用.loc或[](其中包含一个或多个缺失的标签)是不推荐使用.reindex的。因此,问题的答案是:
df1 = df.reindex(columns=['b','c'])
在以前的版本中,只要找到至少一个键,就可以使用.loc〔标签列表〕(否则会引发KeyError)。此行为已弃用,现在显示警告消息。建议使用.reindex()。
阅读更多关于索引和选择数据的信息。
尝试使用pandas.DataFrame.get(请参阅文档):
import pandas as pd
import numpy as np
dates = pd.date_range('20200102', periods=6)
df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD'))
df.get(['A', 'C'])
我已经看到了几个答案,但其中一个仍然不清楚。你会如何选择那些感兴趣的专栏?
答案是,如果您将它们收集在列表中,则可以使用列表引用列。
实例
print(extracted_features.shape)
print(extracted_features)
(63,)
['f000004' 'f000005' 'f000006' 'f000014' 'f000039' 'f000040' 'f000043'
'f000047' 'f000048' 'f000049' 'f000050' 'f000051' 'f000052' 'f000053'
'f000054' 'f000055' 'f000056' 'f000057' 'f000058' 'f000059' 'f000060'
'f000061' 'f000062' 'f000063' 'f000064' 'f000065' 'f000066' 'f000067'
'f000068' 'f000069' 'f000070' 'f000071' 'f000072' 'f000073' 'f000074'
'f000075' 'f000076' 'f000077' 'f000078' 'f000079' 'f000080' 'f000081'
'f000082' 'f000083' 'f000084' 'f000085' 'f000086' 'f000087' 'f000088'
'f000089' 'f000090' 'f000091' 'f000092' 'f000093' 'f000094' 'f000095'
'f000096' 'f000097' 'f000098' 'f000099' 'f000100' 'f000101' 'f000103']
我有以下列表/NumPy数组extracted_features,指定了63列。原始数据集有103列,我想提取这些列,然后使用
dataset[extracted_features]
你最终会得到这个
这是你在机器学习中经常用到的东西(更具体地说,在特征选择中)。我也想讨论其他方式,但我认为其他Stack Overflower用户已经涵盖了这一点。