如何从df中选择列a和b,并将它们保存到新的数据帧df1中?
index a b c
1 2 3 4
2 3 4 5
尝试失败:
df1 = df['a':'b']
df1 = df.ix[:, 'a':'b']
如何从df中选择列a和b,并将它们保存到新的数据帧df1中?
index a b c
1 2 3 4
2 3 4 5
尝试失败:
df1 = df['a':'b']
df1 = df.ix[:, 'a':'b']
当前回答
您可以提供要删除的列的列表,并使用Pandas DataFrame上的drop()函数仅返回所需的列。
只是说说而已
colsToDrop = ['a']
df.drop(colsToDrop, axis=1)
将返回仅包含列b和c的DataFrame。
此处记录了drop方法。
其他回答
如果要按行索引和列名获取一个元素,可以像df['b'][0]一样执行。这就像你能想象的那样简单。
或者可以使用df.ix[0,'b']-索引和标签的混合用法。
注意:从v0.20开始,ix已被弃用,取而代之的是loc/iloc。
前面的答案中讨论的不同方法基于这样的假设:用户知道要删除或子集的列索引,或者用户希望使用一系列列(例如“C”和“E”之间)来子集数据帧。
pandas.DataFrame.drop()当然是一个基于用户定义的列列表对数据进行子集的选项(尽管您必须谨慎地始终使用数据帧的副本,并且不应将就地参数设置为True!!)
另一个选项是使用pandas.columns.difference(),它对列名进行设置差异,并返回包含所需列的数组的索引类型。以下是解决方案:
df = pd.DataFrame([[2,3,4], [3,4,5]], columns=['a','b','c'], index=[1,2])
columns_for_differencing = ['a']
df1 = df.copy()[df.columns.difference(columns_for_differencing)]
print(df1)
输出将是:
b c
1 3 4
2 4 5
对于Pandas,
具有列名称
dataframe[['column1','column2']]
要通过iloc和带有索引编号的特定列进行选择,请执行以下操作:
dataframe.iloc[:,[1,2]]
带有loc的列名可以使用如下
dataframe.loc[:,['column1','column2']]
您可以使用pandas.DataFrame.filter方法对列进行筛选或重新排序,如下所示:
df1 = df.filter(['a', 'b'])
这在链接方法时也非常有用。
def get_slize(dataframe, start_row, end_row, start_col, end_col):
assert len(dataframe) > end_row and start_row >= 0
assert len(dataframe.columns) > end_col and start_col >= 0
list_of_indexes = list(dataframe.columns)[start_col:end_col]
ans = dataframe.iloc[start_row:end_row][list_of_indexes]
return ans
只需使用此功能