如何从df中选择列a和b,并将它们保存到新的数据帧df1中?

index  a   b   c
1      2   3   4
2      3   4   5

尝试失败:

df1 = df['a':'b']
df1 = df.ix[:, 'a':'b']

当前回答

尝试使用pandas.DataFrame.get(请参阅文档):

import pandas as pd
import numpy as np

dates = pd.date_range('20200102', periods=6)
df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD'))
df.get(['A', 'C'])

其他回答

前面的答案中讨论的不同方法基于这样的假设:用户知道要删除或子集的列索引,或者用户希望使用一系列列(例如“C”和“E”之间)来子集数据帧。

pandas.DataFrame.drop()当然是一个基于用户定义的列列表对数据进行子集的选项(尽管您必须谨慎地始终使用数据帧的副本,并且不应将就地参数设置为True!!)

另一个选项是使用pandas.columns.difference(),它对列名进行设置差异,并返回包含所需列的数组的索引类型。以下是解决方案:

df = pd.DataFrame([[2,3,4], [3,4,5]], columns=['a','b','c'], index=[1,2])
columns_for_differencing = ['a']
df1 = df.copy()[df.columns.difference(columns_for_differencing)]
print(df1)

输出将是:

    b   c
1   3   4
2   4   5

若要排除某些列,可以将它们放在列索引中。例如:

   A   B    C     D
0  1  10  100  1000
1  2  20  200  2000

选择除两个以外的所有选项:

df[df.columns.drop(['B', 'D'])]

输出:

   A    C
0  1  100
1  2  200

也可以使用truncate方法选择中间列:

df.truncate(before='B', after='C', axis=1)

输出:

    B    C
0  10  100
1  20  200

假设你的列名(df.columns)是['index','a','b','c'],那么你想要的数据就在第三列和第四列。如果脚本运行时不知道它们的名称,可以执行以下操作

newdf = df[df.columns[2:4]] # Remember, Python is zero-offset! The "third" entry is at slot two.

正如EMS在回答中所指出的,df.ix对列进行了更简洁的切片,但.columns切片接口可能更自然,因为它使用了普通的一维Python列表索引/切片语法。

警告:“index”是DataFrame列的错误名称。同一标签也用于实际df.index属性,即index数组。因此,您的列由df['index']返回,而真正的DataFrame索引由df.index返回。index是一种特殊的系列,优化用于查找其元素值。对于df.index,它用于按标签查找行。df.columns属性也是一个pd.Index数组,用于按标签查找列。

In [39]: df
Out[39]: 
   index  a  b  c
0      1  2  3  4
1      2  3  4  5

In [40]: df1 = df[['b', 'c']]

In [41]: df1
Out[41]: 
   b  c
0  3  4
1  4  5

在最新版本的Pandas中,有一种简单的方法可以做到这一点。列名(字符串)可以按您喜欢的方式进行切片。

columns = ['b', 'c']
df1 = pd.DataFrame(df, columns=columns)