如何从df中选择列a和b,并将它们保存到新的数据帧df1中?
index a b c
1 2 3 4
2 3 4 5
尝试失败:
df1 = df['a':'b']
df1 = df.ix[:, 'a':'b']
如何从df中选择列a和b,并将它们保存到新的数据帧df1中?
index a b c
1 2 3 4
2 3 4 5
尝试失败:
df1 = df['a':'b']
df1 = df.ix[:, 'a':'b']
当前回答
要选择多个列,请提取并查看它们:df是先前命名的数据帧。然后创建一个新的数据帧df1,并选择要提取和查看的列a到D。
df1 = pd.DataFrame(data_frame, columns=['Column A', 'Column B', 'Column C', 'Column D'])
df1
将显示所有必需的列!
其他回答
如果要按行索引和列名获取一个元素,可以像df['b'][0]一样执行。这就像你能想象的那样简单。
或者可以使用df.ix[0,'b']-索引和标签的混合用法。
注意:从v0.20开始,ix已被弃用,取而代之的是loc/iloc。
我发现这种方法非常有用:
# iloc[row slicing, column slicing]
surveys_df.iloc [0:3, 1:4]
更多详情请点击此处。
一种不同且简单的方法:迭代行
使用迭代
df1 = pd.DataFrame() # Creating an empty dataframe
for index,i in df.iterrows():
df1.loc[index, 'A'] = df.loc[index, 'A']
df1.loc[index, 'B'] = df.loc[index, 'B']
df1.head()
要选择多个列,请提取并查看它们:df是先前命名的数据帧。然后创建一个新的数据帧df1,并选择要提取和查看的列a到D。
df1 = pd.DataFrame(data_frame, columns=['Column A', 'Column B', 'Column C', 'Column D'])
df1
将显示所有必需的列!
若要排除某些列,可以将它们放在列索引中。例如:
A B C D
0 1 10 100 1000
1 2 20 200 2000
选择除两个以外的所有选项:
df[df.columns.drop(['B', 'D'])]
输出:
A C
0 1 100
1 2 200
也可以使用truncate方法选择中间列:
df.truncate(before='B', after='C', axis=1)
输出:
B C
0 10 100
1 20 200