如何从df中选择列a和b,并将它们保存到新的数据帧df1中?

index  a   b   c
1      2   3   4
2      3   4   5

尝试失败:

df1 = df['a':'b']
df1 = df.ix[:, 'a':'b']

当前回答

如果要按行索引和列名获取一个元素,可以像df['b'][0]一样执行。这就像你能想象的那样简单。

或者可以使用df.ix[0,'b']-索引和标签的混合用法。

注意:从v0.20开始,ix已被弃用,取而代之的是loc/iloc。

其他回答

列名(字符串)无法按您尝试的方式进行切片。

这里有两个选项。如果您从上下文中知道要分割哪些变量,只需通过将列表传递到__getitem_语法([])中,即可返回这些列的视图。

df1 = df[['a', 'b']]

或者,如果重要的是对它们进行数字索引,而不是按它们的名称进行索引(假设您的代码应该在不知道前两列的名称的情况下自动进行索引),那么您可以改为这样做:

df1 = df.iloc[:, 0:2] # Remember that Python does not slice inclusive of the ending index.

此外,您应该熟悉Pandas对象视图与该对象副本的概念。上述第一个方法将在内存中返回所需子对象(所需切片)的新副本。

然而,有时Pandas中有一些索引约定不这样做,而是给你一个新变量,它只引用与原始对象中的子对象或切片相同的内存块。这将发生在第二种索引方式中,因此您可以使用.copy()方法对其进行修改以获得常规副本。当发生这种情况时,更改您认为的切片对象有时会更改原始对象。时刻注意这一点总是很好的。

df1 = df.iloc[0, 0:2].copy() # To avoid the case where changing df1 also changes df

要使用iloc,您需要知道列位置(或索引)。由于列位置可能会改变,您可以使用iloc和dataframe对象的columns方法的get_loc函数来获取列索引,而不是硬编码索引。

{df.columns.get_loc(c): c for idx, c in enumerate(df.columns)}

现在,您可以使用此字典通过名称和iloc访问列。

从0.11.0版起,可以使用.loc索引器以尝试的方式对列进行切片:

df.loc[:, 'C':'E']

相当于

df[['C', 'D', 'E']]  # or df.loc[:, ['C', 'D', 'E']]

并返回列C到E。


随机生成的DataFrame演示:

import pandas as pd
import numpy as np
np.random.seed(5)
df = pd.DataFrame(np.random.randint(100, size=(100, 6)),
                  columns=list('ABCDEF'),
                  index=['R{}'.format(i) for i in range(100)])
df.head()

Out:
     A   B   C   D   E   F
R0  99  78  61  16  73   8
R1  62  27  30  80   7  76
R2  15  53  80  27  44  77
R3  75  65  47  30  84  86
R4  18   9  41  62   1  82

要获取从C到E的列(请注意,与整数切片不同,列中包含E):

df.loc[:, 'C':'E']

Out:
      C   D   E
R0   61  16  73
R1   30  80   7
R2   80  27  44
R3   47  30  84
R4   41  62   1
R5    5  58   0
...

这同样适用于基于标签选择行。从这些列中获取行R6到R10:

df.loc['R6':'R10', 'C':'E']

Out:
      C   D   E
R6   51  27  31
R7   83  19  18
R8   11  67  65
R9   78  27  29
R10   7  16  94

.loc还接受布尔数组,因此您可以选择数组中相应条目为True的列。例如,df.columns.isin(list('BCD'))返回array([False,True,True,False,False,False],dtype=bool)-如果列名在列表['B','C','D']中,则返回True;否则为False。

df.loc[:, df.columns.isin(list('BCD'))]

Out:
      B   C   D
R0   78  61  16
R1   27  30  80
R2   53  80  27
R3   65  47  30
R4    9  41  62
R5   78   5  58
...

对于Pandas,

具有列名称

dataframe[['column1','column2']]

要通过iloc和带有索引编号的特定列进行选择,请执行以下操作:

dataframe.iloc[:,[1,2]]

带有loc的列名可以使用如下

dataframe.loc[:,['column1','column2']]
In [39]: df
Out[39]: 
   index  a  b  c
0      1  2  3  4
1      2  3  4  5

In [40]: df1 = df[['b', 'c']]

In [41]: df1
Out[41]: 
   b  c
0  3  4
1  4  5
def get_slize(dataframe, start_row, end_row, start_col, end_col):
    assert len(dataframe) > end_row and start_row >= 0
    assert len(dataframe.columns) > end_col and start_col >= 0
    list_of_indexes = list(dataframe.columns)[start_col:end_col]
    ans = dataframe.iloc[start_row:end_row][list_of_indexes]
    return ans

只需使用此功能