如何从df中选择列a和b,并将它们保存到新的数据帧df1中?
index a b c
1 2 3 4
2 3 4 5
尝试失败:
df1 = df['a':'b']
df1 = df.ix[:, 'a':'b']
如何从df中选择列a和b,并将它们保存到新的数据帧df1中?
index a b c
1 2 3 4
2 3 4 5
尝试失败:
df1 = df['a':'b']
df1 = df.ix[:, 'a':'b']
当前回答
前面的答案中讨论的不同方法基于这样的假设:用户知道要删除或子集的列索引,或者用户希望使用一系列列(例如“C”和“E”之间)来子集数据帧。
pandas.DataFrame.drop()当然是一个基于用户定义的列列表对数据进行子集的选项(尽管您必须谨慎地始终使用数据帧的副本,并且不应将就地参数设置为True!!)
另一个选项是使用pandas.columns.difference(),它对列名进行设置差异,并返回包含所需列的数组的索引类型。以下是解决方案:
df = pd.DataFrame([[2,3,4], [3,4,5]], columns=['a','b','c'], index=[1,2])
columns_for_differencing = ['a']
df1 = df.copy()[df.columns.difference(columns_for_differencing)]
print(df1)
输出将是:
b c
1 3 4
2 4 5
其他回答
你可以使用熊猫。
我创建DataFrame:
import pandas as pd
df = pd.DataFrame([[1, 2,5], [5,4, 5], [7,7, 8], [7,6,9]],
index=['Jane', 'Peter','Alex','Ann'],
columns=['Test_1', 'Test_2', 'Test_3'])
数据帧:
Test_1 Test_2 Test_3
Jane 1 2 5
Peter 5 4 5
Alex 7 7 8
Ann 7 6 9
要按名称选择一个或多个列,请执行以下操作:
df[['Test_1', 'Test_3']]
Test_1 Test_3
Jane 1 5
Peter 5 5
Alex 7 8
Ann 7 9
您还可以使用:
df.Test_2
然后得到Test_2列:
Jane 2
Peter 4
Alex 7
Ann 6
您还可以使用.loc()从这些行中选择列和行。这称为“切片”。请注意,我从列Test_1到Test_3:
df.loc[:, 'Test_1':'Test_3']
“切片”是:
Test_1 Test_2 Test_3
Jane 1 2 5
Peter 5 4 5
Alex 7 7 8
Ann 7 6 9
如果你只想让Peter和Ann在Test_1和Test_3列中:
df.loc[['Peter', 'Ann'], ['Test_1', 'Test_3']]
你得到:
Test_1 Test_3
Peter 5 5
Ann 7 9
从0.21.0开始,在列表中使用.loc或[](其中包含一个或多个缺失的标签)是不推荐使用.reindex的。因此,问题的答案是:
df1 = df.reindex(columns=['b','c'])
在以前的版本中,只要找到至少一个键,就可以使用.loc〔标签列表〕(否则会引发KeyError)。此行为已弃用,现在显示警告消息。建议使用.reindex()。
阅读更多关于索引和选择数据的信息。
若要排除某些列,可以将它们放在列索引中。例如:
A B C D
0 1 10 100 1000
1 2 20 200 2000
选择除两个以外的所有选项:
df[df.columns.drop(['B', 'D'])]
输出:
A C
0 1 100
1 2 200
也可以使用truncate方法选择中间列:
df.truncate(before='B', after='C', axis=1)
输出:
B C
0 10 100
1 20 200
def get_slize(dataframe, start_row, end_row, start_col, end_col):
assert len(dataframe) > end_row and start_row >= 0
assert len(dataframe.columns) > end_col and start_col >= 0
list_of_indexes = list(dataframe.columns)[start_col:end_col]
ans = dataframe.iloc[start_row:end_row][list_of_indexes]
return ans
只需使用此功能
如果要按行索引和列名获取一个元素,可以像df['b'][0]一样执行。这就像你能想象的那样简单。
或者可以使用df.ix[0,'b']-索引和标签的混合用法。
注意:从v0.20开始,ix已被弃用,取而代之的是loc/iloc。