如何从df中选择列a和b,并将它们保存到新的数据帧df1中?

index  a   b   c
1      2   3   4
2      3   4   5

尝试失败:

df1 = df['a':'b']
df1 = df.ix[:, 'a':'b']

当前回答

前面的答案中讨论的不同方法基于这样的假设:用户知道要删除或子集的列索引,或者用户希望使用一系列列(例如“C”和“E”之间)来子集数据帧。

pandas.DataFrame.drop()当然是一个基于用户定义的列列表对数据进行子集的选项(尽管您必须谨慎地始终使用数据帧的副本,并且不应将就地参数设置为True!!)

另一个选项是使用pandas.columns.difference(),它对列名进行设置差异,并返回包含所需列的数组的索引类型。以下是解决方案:

df = pd.DataFrame([[2,3,4], [3,4,5]], columns=['a','b','c'], index=[1,2])
columns_for_differencing = ['a']
df1 = df.copy()[df.columns.difference(columns_for_differencing)]
print(df1)

输出将是:

    b   c
1   3   4
2   4   5

其他回答

对于Pandas,

具有列名称

dataframe[['column1','column2']]

要通过iloc和带有索引编号的特定列进行选择,请执行以下操作:

dataframe.iloc[:,[1,2]]

带有loc的列名可以使用如下

dataframe.loc[:,['column1','column2']]

如果要按行索引和列名获取一个元素,可以像df['b'][0]一样执行。这就像你能想象的那样简单。

或者可以使用df.ix[0,'b']-索引和标签的混合用法。

注意:从v0.20开始,ix已被弃用,取而代之的是loc/iloc。

尝试使用pandas.DataFrame.get(请参阅文档):

import pandas as pd
import numpy as np

dates = pd.date_range('20200102', periods=6)
df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD'))
df.get(['A', 'C'])

要选择多个列,请提取并查看它们:df是先前命名的数据帧。然后创建一个新的数据帧df1,并选择要提取和查看的列a到D。

df1 = pd.DataFrame(data_frame, columns=['Column A', 'Column B', 'Column C', 'Column D'])
df1

将显示所有必需的列!

def get_slize(dataframe, start_row, end_row, start_col, end_col):
    assert len(dataframe) > end_row and start_row >= 0
    assert len(dataframe.columns) > end_col and start_col >= 0
    list_of_indexes = list(dataframe.columns)[start_col:end_col]
    ans = dataframe.iloc[start_row:end_row][list_of_indexes]
    return ans

只需使用此功能