我想从目录中读取几个CSV文件到熊猫,并将它们连接到一个大的DataFrame。不过我还没弄明白。以下是我目前所掌握的:

import glob
import pandas as pd

# Get data file names
path = r'C:\DRO\DCL_rawdata_files'
filenames = glob.glob(path + "/*.csv")

dfs = []
for filename in filenames:
    dfs.append(pd.read_csv(filename))

# Concatenate all data into one DataFrame
big_frame = pd.concat(dfs, ignore_index=True)

我想我在for循环中需要一些帮助?


当前回答

如果你想递归搜索(Python 3.5或以上),你可以这样做:

from glob import iglob
import pandas as pd

path = r'C:\user\your\path\**\*.csv'

all_rec = iglob(path, recursive=True)     
dataframes = (pd.read_csv(f) for f in all_rec)
big_dataframe = pd.concat(dataframes, ignore_index=True)

请注意,最后三行可以用一行表示:

df = pd.concat((pd.read_csv(f) for f in iglob(path, recursive=True)), ignore_index=True)

你可以在这里找到**的文档。另外,我使用了iglob而不是glob,因为它返回的是迭代器而不是列表。



编辑:多平台递归功能:

你可以把上面的内容包装成一个多平台函数(Linux, Windows, Mac),所以你可以这样做:

df = read_df_rec('C:\user\your\path', *.csv)

函数如下:

from glob import iglob
from os.path import join
import pandas as pd

def read_df_rec(path, fn_regex=r'*.csv'):
    return pd.concat((pd.read_csv(f) for f in iglob(
        join(path, '**', fn_regex), recursive=True)), ignore_index=True)

其他回答

使用map的一行代码,但是如果你想指定额外的参数,你可以这样做:

import pandas as pd
import glob
import functools

df = pd.concat(map(functools.partial(pd.read_csv, sep='|', compression=None),
                    glob.glob("data/*.csv")))

注意:map本身不允许您提供额外的参数。

你也可以这样做:

import pandas as pd
import os

new_df = pd.DataFrame()
for r, d, f in os.walk(csv_folder_path):
    for file in f:
        complete_file_path = csv_folder_path+file
        read_file = pd.read_csv(complete_file_path)
        new_df = new_df.append(read_file, ignore_index=True)


new_df.shape

darindaCoder的答案的替代方案:

path = r'C:\DRO\DCL_rawdata_files'                     # use your path
all_files = glob.glob(os.path.join(path, "*.csv"))     # advisable to use os.path.join as this makes concatenation OS independent

df_from_each_file = (pd.read_csv(f) for f in all_files)
concatenated_df   = pd.concat(df_from_each_file, ignore_index=True)
# doesn't create a list, nor does it append to one

这里几乎所有的答案要么是不必要的复杂(glob模式匹配),要么依赖于额外的第三方库。您可以在两行中使用Pandas和Python(所有版本)已经内置的所有内容来完成此操作。

对于一些文件-一行程序

df = pd.concat(map(pd.read_csv, ['d1.csv', 'd2.csv','d3.csv']))

对于许多文件

import os

filepaths = [f for f in os.listdir(".") if f.endswith('.csv')]
df = pd.concat(map(pd.read_csv, filepaths))

对于无头文件

如果你想用pd改变一些特定的东西。Read_csv(即,没有头),你可以创建一个单独的函数,并调用你的地图:

def f(i):
    return pd.read_csv(i, header=None)

df = pd.concat(map(f, filepaths))

这条pandas行,它设置了df,利用了三个东西:

Python的map (function, iterable)发送给函数(the pd.read_csv())迭代对象(我们的列表),它是每个CSV元素 在filepaths)。 Panda的read_csv()函数正常读取每个CSV文件。 Panda的concat()将所有这些都放在一个df变量下。

另一个带有列表理解的一行程序,允许使用read_csv参数。

df = pd.concat([pd.read_csv(f'dir/{f}') for f in os.listdir('dir') if f.endswith('.csv')])