我想从目录中读取几个CSV文件到熊猫,并将它们连接到一个大的DataFrame。不过我还没弄明白。以下是我目前所掌握的:
import glob
import pandas as pd
# Get data file names
path = r'C:\DRO\DCL_rawdata_files'
filenames = glob.glob(path + "/*.csv")
dfs = []
for filename in filenames:
dfs.append(pd.read_csv(filename))
# Concatenate all data into one DataFrame
big_frame = pd.concat(dfs, ignore_index=True)
我想我在for循环中需要一些帮助?
考虑使用convtools库,它提供了大量数据处理原语,并在底层生成简单的临时代码。
它不应该比熊猫/极地快,但有时它可以。
例如,你可以连接到一个CSV文件进一步重用-这是代码:
import glob
from convtools import conversion as c
from convtools.contrib.tables import Table
import pandas as pd
def test_pandas():
df = pd.concat(
(
pd.read_csv(filename, index_col=None, header=0)
for filename in glob.glob("tmp/*.csv")
),
axis=0,
ignore_index=True,
)
df.to_csv("out.csv", index=False)
# took 20.9 s
def test_convtools():
table = None
for filename in glob.glob("tmp/*.csv"):
table_ = Table.from_csv(filename, header=False)
if table is None:
table = table_
else:
table = table.chain(table_)
table.into_csv("out_convtools.csv", include_header=False)
# took 15.8 s
当然,如果你只是想获得一个数据帧而不写入一个连接文件,它将相应地花费4.63秒和10.9秒(pandas在这里更快,因为它不需要压缩列来写入回)。
如果你想递归搜索(Python 3.5或以上),你可以这样做:
from glob import iglob
import pandas as pd
path = r'C:\user\your\path\**\*.csv'
all_rec = iglob(path, recursive=True)
dataframes = (pd.read_csv(f) for f in all_rec)
big_dataframe = pd.concat(dataframes, ignore_index=True)
请注意,最后三行可以用一行表示:
df = pd.concat((pd.read_csv(f) for f in iglob(path, recursive=True)), ignore_index=True)
你可以在这里找到**的文档。另外,我使用了iglob而不是glob,因为它返回的是迭代器而不是列表。
编辑:多平台递归功能:
你可以把上面的内容包装成一个多平台函数(Linux, Windows, Mac),所以你可以这样做:
df = read_df_rec('C:\user\your\path', *.csv)
函数如下:
from glob import iglob
from os.path import join
import pandas as pd
def read_df_rec(path, fn_regex=r'*.csv'):
return pd.concat((pd.read_csv(f) for f in iglob(
join(path, '**', fn_regex), recursive=True)), ignore_index=True)