我想从目录中读取几个CSV文件到熊猫,并将它们连接到一个大的DataFrame。不过我还没弄明白。以下是我目前所掌握的:

import glob
import pandas as pd

# Get data file names
path = r'C:\DRO\DCL_rawdata_files'
filenames = glob.glob(path + "/*.csv")

dfs = []
for filename in filenames:
    dfs.append(pd.read_csv(filename))

# Concatenate all data into one DataFrame
big_frame = pd.concat(dfs, ignore_index=True)

我想我在for循环中需要一些帮助?


当前回答

可选择使用pathlib库(通常优先于os.path)。

该方法避免了重复使用pandas concat()/ apping()。

从熊猫文档中可以看到: 值得注意的是,concat()(因此append())会生成数据的完整副本,并且不断重用此函数会产生显著的性能影响。如果需要对多个数据集使用操作,请使用列表推导式。

import pandas as pd
from pathlib import Path

dir = Path("../relevant_directory")

df = (pd.read_csv(f) for f in dir.glob("*.csv"))
df = pd.concat(df)

其他回答

darindaCoder的答案的替代方案:

path = r'C:\DRO\DCL_rawdata_files'                     # use your path
all_files = glob.glob(os.path.join(path, "*.csv"))     # advisable to use os.path.join as this makes concatenation OS independent

df_from_each_file = (pd.read_csv(f) for f in all_files)
concatenated_df   = pd.concat(df_from_each_file, ignore_index=True)
# doesn't create a list, nor does it append to one

可选择使用pathlib库(通常优先于os.path)。

该方法避免了重复使用pandas concat()/ apping()。

从熊猫文档中可以看到: 值得注意的是,concat()(因此append())会生成数据的完整副本,并且不断重用此函数会产生显著的性能影响。如果需要对多个数据集使用操作,请使用列表推导式。

import pandas as pd
from pathlib import Path

dir = Path("../relevant_directory")

df = (pd.read_csv(f) for f in dir.glob("*.csv"))
df = pd.concat(df)

这里几乎所有的答案要么是不必要的复杂(glob模式匹配),要么依赖于额外的第三方库。您可以在两行中使用Pandas和Python(所有版本)已经内置的所有内容来完成此操作。

对于一些文件-一行程序

df = pd.concat(map(pd.read_csv, ['d1.csv', 'd2.csv','d3.csv']))

对于许多文件

import os

filepaths = [f for f in os.listdir(".") if f.endswith('.csv')]
df = pd.concat(map(pd.read_csv, filepaths))

对于无头文件

如果你想用pd改变一些特定的东西。Read_csv(即,没有头),你可以创建一个单独的函数,并调用你的地图:

def f(i):
    return pd.read_csv(i, header=None)

df = pd.concat(map(f, filepaths))

这条pandas行,它设置了df,利用了三个东西:

Python的map (function, iterable)发送给函数(the pd.read_csv())迭代对象(我们的列表),它是每个CSV元素 在filepaths)。 Panda的read_csv()函数正常读取每个CSV文件。 Panda的concat()将所有这些都放在一个df变量下。

如果出现未命名列的问题,请使用此代码沿x轴合并多个CSV文件。

import glob
import os
import pandas as pd

merged_df = pd.concat([pd.read_csv(csv_file, index_col=0, header=0) for csv_file in glob.glob(
        os.path.join("data/", "*.csv"))], axis=0, ignore_index=True)

merged_df.to_csv("merged.csv")
import pandas as pd
import glob

path = r'C:\DRO\DCL_rawdata_files' # use your path
file_path_list = glob.glob(path + "/*.csv")

file_iter = iter(file_path_list)

list_df_csv = []
list_df_csv.append(pd.read_csv(next(file_iter)))

for file in file_iter:
    lsit_df_csv.append(pd.read_csv(file, header=0))
df = pd.concat(lsit_df_csv, ignore_index=True)