我想从目录中读取几个CSV文件到熊猫,并将它们连接到一个大的DataFrame。不过我还没弄明白。以下是我目前所掌握的:

import glob
import pandas as pd

# Get data file names
path = r'C:\DRO\DCL_rawdata_files'
filenames = glob.glob(path + "/*.csv")

dfs = []
for filename in filenames:
    dfs.append(pd.read_csv(filename))

# Concatenate all data into one DataFrame
big_frame = pd.concat(dfs, ignore_index=True)

我想我在for循环中需要一些帮助?


当前回答

import glob
import os
import pandas as pd   
df = pd.concat(map(pd.read_csv, glob.glob(os.path.join('', "my_files*.csv"))))

其他回答

如果你想递归搜索(Python 3.5或以上),你可以这样做:

from glob import iglob
import pandas as pd

path = r'C:\user\your\path\**\*.csv'

all_rec = iglob(path, recursive=True)     
dataframes = (pd.read_csv(f) for f in all_rec)
big_dataframe = pd.concat(dataframes, ignore_index=True)

请注意,最后三行可以用一行表示:

df = pd.concat((pd.read_csv(f) for f in iglob(path, recursive=True)), ignore_index=True)

你可以在这里找到**的文档。另外,我使用了iglob而不是glob,因为它返回的是迭代器而不是列表。



编辑:多平台递归功能:

你可以把上面的内容包装成一个多平台函数(Linux, Windows, Mac),所以你可以这样做:

df = read_df_rec('C:\user\your\path', *.csv)

函数如下:

from glob import iglob
from os.path import join
import pandas as pd

def read_df_rec(path, fn_regex=r'*.csv'):
    return pd.concat((pd.read_csv(f) for f in iglob(
        join(path, '**', fn_regex), recursive=True)), ignore_index=True)

如果多个CSV文件被压缩,您可以使用zipfile读取所有文件并按以下方式连接:

import zipfile
import pandas as pd

ziptrain = zipfile.ZipFile('yourpath/yourfile.zip')

train = []

train = [ pd.read_csv(ziptrain.open(f)) for f in ziptrain.namelist() ]

df = pd.concat(train)

另一个带有列表理解的一行程序,允许使用read_csv参数。

df = pd.concat([pd.read_csv(f'dir/{f}') for f in os.listdir('dir') if f.endswith('.csv')])

我在谷歌上找到了高拉夫·辛格的答案。

然而,到最近为止,我发现使用NumPy进行任何操作,然后将其分配给一个数据帧,而不是在迭代的基础上操作数据帧本身,这似乎在这个解决方案中也有效。

我真诚地希望访问此页的任何人都能考虑这种方法,但我不想将这段巨大的代码作为注释附加,从而降低其可读性。

您可以利用NumPy来真正加速数据帧连接。

import os
import glob
import pandas as pd
import numpy as np

path = "my_dir_full_path"
allFiles = glob.glob(os.path.join(path,"*.csv"))


np_array_list = []
for file_ in allFiles:
    df = pd.read_csv(file_,index_col=None, header=0)
    np_array_list.append(df.as_matrix())

comb_np_array = np.vstack(np_array_list)
big_frame = pd.DataFrame(comb_np_array)

big_frame.columns = ["col1", "col2"....]

时间统计:

total files :192
avg lines per file :8492
--approach 1 without NumPy -- 8.248656988143921 seconds ---
total records old :1630571
--approach 2 with NumPy -- 2.289292573928833 seconds ---

简单快捷

导入两个或多个CSV文件,而无需制作名称列表。

import glob
import pandas as pd

df = pd.concat(map(pd.read_csv, glob.glob('data/*.csv')))