我想从目录中读取几个CSV文件到熊猫,并将它们连接到一个大的DataFrame。不过我还没弄明白。以下是我目前所掌握的:

import glob
import pandas as pd

# Get data file names
path = r'C:\DRO\DCL_rawdata_files'
filenames = glob.glob(path + "/*.csv")

dfs = []
for filename in filenames:
    dfs.append(pd.read_csv(filename))

# Concatenate all data into one DataFrame
big_frame = pd.concat(dfs, ignore_index=True)

我想我在for循环中需要一些帮助?


当前回答

我在谷歌上找到了高拉夫·辛格的答案。

然而,到最近为止,我发现使用NumPy进行任何操作,然后将其分配给一个数据帧,而不是在迭代的基础上操作数据帧本身,这似乎在这个解决方案中也有效。

我真诚地希望访问此页的任何人都能考虑这种方法,但我不想将这段巨大的代码作为注释附加,从而降低其可读性。

您可以利用NumPy来真正加速数据帧连接。

import os
import glob
import pandas as pd
import numpy as np

path = "my_dir_full_path"
allFiles = glob.glob(os.path.join(path,"*.csv"))


np_array_list = []
for file_ in allFiles:
    df = pd.read_csv(file_,index_col=None, header=0)
    np_array_list.append(df.as_matrix())

comb_np_array = np.vstack(np_array_list)
big_frame = pd.DataFrame(comb_np_array)

big_frame.columns = ["col1", "col2"....]

时间统计:

total files :192
avg lines per file :8492
--approach 1 without NumPy -- 8.248656988143921 seconds ---
total records old :1630571
--approach 2 with NumPy -- 2.289292573928833 seconds ---

其他回答

import glob
import os
import pandas as pd   
df = pd.concat(map(pd.read_csv, glob.glob(os.path.join('', "my_files*.csv"))))

我在谷歌上找到了高拉夫·辛格的答案。

然而,到最近为止,我发现使用NumPy进行任何操作,然后将其分配给一个数据帧,而不是在迭代的基础上操作数据帧本身,这似乎在这个解决方案中也有效。

我真诚地希望访问此页的任何人都能考虑这种方法,但我不想将这段巨大的代码作为注释附加,从而降低其可读性。

您可以利用NumPy来真正加速数据帧连接。

import os
import glob
import pandas as pd
import numpy as np

path = "my_dir_full_path"
allFiles = glob.glob(os.path.join(path,"*.csv"))


np_array_list = []
for file_ in allFiles:
    df = pd.read_csv(file_,index_col=None, header=0)
    np_array_list.append(df.as_matrix())

comb_np_array = np.vstack(np_array_list)
big_frame = pd.DataFrame(comb_np_array)

big_frame.columns = ["col1", "col2"....]

时间统计:

total files :192
avg lines per file :8492
--approach 1 without NumPy -- 8.248656988143921 seconds ---
total records old :1630571
--approach 2 with NumPy -- 2.289292573928833 seconds ---

考虑使用convtools库,它提供了大量数据处理原语,并在底层生成简单的临时代码。 它不应该比熊猫/极地快,但有时它可以。

例如,你可以连接到一个CSV文件进一步重用-这是代码:

import glob

from convtools import conversion as c
from convtools.contrib.tables import Table
import pandas as pd


def test_pandas():
    df = pd.concat(
        (
            pd.read_csv(filename, index_col=None, header=0)
            for filename in glob.glob("tmp/*.csv")
        ),
        axis=0,
        ignore_index=True,
    )
    df.to_csv("out.csv", index=False)
# took 20.9 s


def test_convtools():
    table = None
    for filename in glob.glob("tmp/*.csv"):
        table_ = Table.from_csv(filename, header=False)
        if table is None:
            table = table_
        else:
            table = table.chain(table_)

    table.into_csv("out_convtools.csv", include_header=False)
# took 15.8 s

当然,如果你只是想获得一个数据帧而不写入一个连接文件,它将相应地花费4.63秒和10.9秒(pandas在这里更快,因为它不需要压缩列来写入回)。

可选择使用pathlib库(通常优先于os.path)。

该方法避免了重复使用pandas concat()/ apping()。

从熊猫文档中可以看到: 值得注意的是,concat()(因此append())会生成数据的完整副本,并且不断重用此函数会产生显著的性能影响。如果需要对多个数据集使用操作,请使用列表推导式。

import pandas as pd
from pathlib import Path

dir = Path("../relevant_directory")

df = (pd.read_csv(f) for f in dir.glob("*.csv"))
df = pd.concat(df)

使用map的一行代码,但是如果你想指定额外的参数,你可以这样做:

import pandas as pd
import glob
import functools

df = pd.concat(map(functools.partial(pd.read_csv, sep='|', compression=None),
                    glob.glob("data/*.csv")))

注意:map本身不允许您提供额外的参数。